Contrast in intracardiac acoustic radiation force impulse images of radiofrequency ablation lesions.
Date
2014-04
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
We have previously shown that intracardiac acoustic radiation force impulse (ARFI) imaging visualizes tissue stiffness changes caused by radiofrequency ablation (RFA). The objectives of this in vivo study were to (1) quantify measured ARFI-induced displacements in RFA lesion and unablated myocardium and (2) calculate the lesion contrast (C) and contrast-to-noise ratio (CNR) in two-dimensional ARFI and conventional intracardiac echo images. In eight canine subjects, an ARFI imaging-electroanatomical mapping system was used to map right atrial ablation lesion sites and guide the acquisition of ARFI images at these sites before and after ablation. Readers of the ARFI images identified lesion sites with high sensitivity (90.2%) and specificity (94.3%) and the average measured ARFI-induced displacements were higher at unablated sites (11.23 ± 1.71 µm) than at ablated sites (6.06 ± 0.94 µm). The average lesion C (0.29 ± 0.33) and CNR (1.83 ± 1.75) were significantly higher for ARFI images than for spatially registered conventional B-mode images (C = -0.03 ± 0.28, CNR = 0.74 ± 0.68).
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Eyerly, Stephanie A, Tristram D Bahnson, Jason I Koontz, David P Bradway, Douglas M Dumont, Gregg E Trahey and Patrick D Wolf (2014). Contrast in intracardiac acoustic radiation force impulse images of radiofrequency ablation lesions. Ultrason Imaging, 36(2). pp. 133–148. 10.1177/0161734613519602 Retrieved from https://hdl.handle.net/10161/10368.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Tristram Dan Bahnson
Jason Koontz
David Bradway
David P. Bradway is a research scientist in the Biomedical Engineering Department at Duke University. He earned his Ph.D. in biomedical engineering in 2013 from Duke. Afterward, he was a guest postdoc at the Technical University of Denmark (DTU), supported by a Whitaker International Program Scholarship. He has conducted research internships at the Cleveland Clinic Foundation, Volcano Corporation, and Siemens Healthcare, working on ultrasound research since 2002.
Gregg E. Trahey
My laboratory develops and evaluates novel ultrasonic imaging methods. Current projects involve high resolutioon imaging of the breast and mechanical characterization of the breast and cardiovascular system. We conduct phantom, animal, ex vivo and in vivo trials. Current clinical trials involve imaging of soft and hard vascular plaques and mecahnical imaging of breast lesions.
Patrick D. Wolf
My research is primarily in the area of advanced instrumentation for diagnosis and treatment of electrophysiological problems. This research covers two primary organ systems: the heart and the brain.
One thrust of the cardiac-based work is centered on atrial fibrillation and in particular on very low energy atrial defibrillation strategies. The goal is to produce a device that can defibrillate the atria with a painless series of electrical impulses. A second area of interest is the study of the biophysics of radio frequency ablation of the heart. A third avenue of research in the cardiac area is the development of new instruments and techniques for tracking interventional devices within the body without the use of ionizing radiation. These devices primarily rely on ultrasound technology. There is a strong collaborative effort in this area with the Duke Ultrasound group in the Department of Biomedical Engineering. The long term goal of this work is to develop technology to deliver image-guided therapy to target tissues in the heart and other organs.
In neuroengineering, we are currently developing a "brainchip" that would telemeter information recorded directly from neurons in the brain to a remote device. This IC based technology is being developed for application in neuro-prosthetic or brain controlled devices. There is a close collaboration on this project between our lab and the laboratory of Dr. Miguel Nicolelis the Department of Neurobiology. We are also developing advanced neural recoding systems to use on unrestrained, untethered animals as they learn to perform certain tasks.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.