Higher order asymptotics for large deviations -- Part I

dc.contributor.author

Fernando, K

dc.contributor.author

Hebbar, P

dc.date.accessioned

2019-09-18T13:57:15Z

dc.date.available

2019-09-18T13:57:15Z

dc.date.updated

2019-09-18T13:57:15Z

dc.description.abstract

For sequences of non-lattice weakly dependent random variables, we obtain asymptotic expansions for Large Deviation Principles. These expansions, commonly referred to as strong large deviation results, are in the spirit of Edgeworth Expansions for the Central Limit Theorem. We apply our results to show that Diophantine iid sequences, finite state Markov chains, strongly ergodic Markov chains and Birkhoff sums of smooth expanding maps & subshifts of finite type satisfy these strong large deviation results.

dc.identifier.uri

https://hdl.handle.net/10161/19320

dc.publisher

IOS Press

dc.subject

math.PR

dc.subject

math.PR

dc.subject

math.DS

dc.subject

60F10, 60J60, 37A50

dc.title

Higher order asymptotics for large deviations -- Part I

dc.type

Journal article

duke.contributor.orcid

Hebbar, P|0000-0002-4938-7264

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.organisational-group

Duke

pubs.organisational-group

Mathematics

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1811.06793v4.pdf
Size:
608.39 KB
Format:
Adobe Portable Document Format