Site frequency spectra from genomic SNP surveys.

Loading...
Thumbnail Image

Date

2009-06

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

12
views
18
downloads

Citation Stats

Abstract

Genomic survey data now permit an unprecedented level of sensitivity in the detection of departures from canonical evolutionary models, including expansions in population size and selective sweeps. Here, we examine the effects of seemingly subtle differences among sampling distributions on goodness of fit analyses of site frequency spectra constructed from single nucleotide polymorphisms. Conditioning on the observation of exactly two alleles in a random sample results in a site frequency spectrum that is independent of the scaled rate of neutral substitution (theta). Other sampling distributions, including conditioning on a single mutational event in the sample genealogy or randomly selecting a single mutation from a genealogy with multiple mutations, have distinct site frequency spectra that show highly significant departures from the predictions of the biallelic model. Some aspects of data filtering may contribute to significant departures of site frequency spectra from expectation, apart from any violation of the standard neutral model.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1016/j.tpb.2009.04.003

Publication Info

Ganapathy, Ganeshkumar, and Marcy K Uyenoyama (2009). Site frequency spectra from genomic SNP surveys. Theoretical population biology, 75(4). pp. 346–354. 10.1016/j.tpb.2009.04.003 Retrieved from https://hdl.handle.net/10161/25951.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Uyenoyama

Marcy K. Uyenoyama

Professor of Biology

Marcy Uyenoyama studies mechanisms of evolutionary change at the molecular and population levels. Among the questions under study include the prediction and detection of the effects of natural selection on genomic structure. A major area of research addresses the development of maximum-likelihood and Bayesian methods for inferring evolutionary processes from the pattern of molecular variation. Evolutionary processes currently under study include characterization of population structure across genomes.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.