Stabilization of a Majorana Zero Mode through Quantum Frustration.

Loading...
Thumbnail Image

Date

2020-07-01

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

16
views
11
downloads

Citation Stats

Abstract

We analyze a system in which a topological Majorana zero mode (MZM) combines with a MZM produced by quantum frustration. At the boundary between the topological and non-topological states, a MZM does not appear. The system that we study combines two parts, a grounded topological superconducting wire that hosts two MZM at its ends, and an on-resonant quantum dot connected to two dissipative leads. The quantum dot with dissipative leads creates an effective two-channel Kondo (2CK) state in which quantum frustration yields an isolated MZM at the dot. We find that coupling the dot to one of the wire Majoranas stabilizes the MZM at the other end of the wire. In addition to providing a route to achieving an unpaired Majorana zero mode, this scheme provides a clear signature of the presence of the 2CK Majorana.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1103/PhysRevB.102.035103

Publication Info

Zhang, Gu, and Harold U Baranger (2020). Stabilization of a Majorana Zero Mode through Quantum Frustration. Physical Review B, 102(3). pp. 035103–035103. 10.1103/PhysRevB.102.035103 Retrieved from https://hdl.handle.net/10161/26449.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Baranger

Harold U. Baranger

Professor of Physics

The broad focus of Prof. Baranger's group is quantum open systems at the nanoscale, particularly the generation of correlation between particles in such systems. Fundamental interest in nanophysics-- the physics of small, nanometer scale, bits of solid-- stems from the ability to control and probe systems on length scales larger than atoms but small enough that the averaging inherent in bulk properties has not yet occurred. Using this ability, entirely unanticipated phenomena can be uncovered on the one hand, and the microscopic basis of bulk phenomena can be probed on the other. Additional interest comes from the many links between nanophysics and nanotechnology. Within this thematic area, our work ranges from projects trying to nail down realistic behavior in well-characterized systems, to more speculative projects reaching beyond regimes investigated experimentally to date.

Correlations between particles are a central issue in many areas of condensed matter physics, from emergent many-body phenomena in complex materials, to strong matter-light interactions in quantum information contexts, to transport properties of single molecules. Such correlations, for either electrons or bosons (photons, plasmons, phonons,…), underlie key phenomena in nanostructures. Using the exquisite control of nanostructures now possible, experimentalists will be able to engineer correlations in nanosystems in the near future. Of particular interest are cases in which one can tune the competition between different types of correlation, or in which correlation can be tunably enhanced or suppressed by other effects (such as confinement or interference), potentially causing a quantum phase transition-- a sudden, qualitative change in the correlations in the system.

My recent work has addressed correlations in both electronic systems (quantum wires and dots) and photonic systems (photon waveguides). We have focused on 3 different systems: (1) qubits coupled to a photonic waveguide, (2) quantum dots in a dissipative environment, and (3) interfaces between graphene and a superconductor, particularly when graphene is in the quantum Hall state. The methods used are both analytical and numerical, and are closely linked to experiments.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.