Frozen Gaussian approximation for high frequency wave propagation in periodic media
Abstract
Propagation of high-frequency wave in periodic media is a challenging problem due to the existence of multiscale characterized by short wavelength, small lattice constant and large physical domain size. Conventional computational methods lead to extremely expensive costs, especially in high dimensions. In this paper, based on Bloch decomposition and asymptotic analysis in the phase space, we derive the frozen Gaussian approximation for high-frequency wave propagation in periodic media and establish its converge to the true solution. The formulation leads to efficient numerical algorithms, which are presented in a companion paper [Delgadillo, Lu and Yang, arXiv:1509.05552].
Type
Department
Description
Provenance
Citation
Permalink
Collections
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.