Peak Systolic Velocity Measurements with Transcranial Doppler Ultrasound Is a Predictor of Incident Stroke among the General Population in China.

Abstract

BACKGROUND AND OBJECTIVE: It is necessary to develop an effective and low-cost screening tool for identifying Chinese people at high risk of stroke. Transcranial Doppler ultrasound (TCD) is a powerful predictor of stroke in the pediatric sickle cell disease population, as demonstrated in the STOP trial. Our study was conducted to determine the prediction value of peak systolic velocities as measured by TCD on subsequent stroke risk in a prospective cohort of the general population from Beijing, China. METHODS: In 2002, a prospective cohort study was conducted among 1392 residents from 11 villages of the Shijingshan district of Beijing, China. The cohort was scheduled for follow up with regard to incident stroke in 2005, 2007, and 2012 by a study team comprised of epidemiologists, nurses, and physicians. Univariate and multivariate Cox proportional hazard regression models were used to determine the factors associated with incident stroke. RESULTS: Participants identified by TCD criteria as having intracranial stenosis had a 3.6-fold greater risk of incident stroke (hazard ratio (HR) 3.57, 95% confidence interval (CI) 1.86-6.83, P<0.01) than those without TCD evidence of intracranial stenosis. The association remained significant in multivariate analysis (HR 2.53, 95% CI 1.31-4.87) after adjusting for other risk factors or confounders. Older age, cigarette smoking, hypertension, and diabetes mellitus remained statistically significant as risk factors after controlling for other factors. CONCLUSIONS: The study confirmed the screening value of TCD among the general population in urban China. Increasing the availability of TCD screening may help identify subjects as higher risk for stroke.

Department

Description

Provenance

Subjects

Citation

Published Version (Please cite this version)

10.1371/journal.pone.0160967

Publication Info

Wang, Hai-Bo, Daniel T Laskowitz, Jodi A Dodds, Gao-Qiang Xie, Pu-Hong Zhang, Yi-Ning Huang, Bo Wang, Yang-Feng Wu, et al. (2016). Peak Systolic Velocity Measurements with Transcranial Doppler Ultrasound Is a Predictor of Incident Stroke among the General Population in China. PLoS One, 11(8). p. e0160967. 10.1371/journal.pone.0160967 Retrieved from https://hdl.handle.net/10161/13592.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Laskowitz

Daniel Todd Laskowitz

Professor of Neurology

Our laboratory uses molecular biology, cell culture, and animal modeling techniques to examine the CNS response to acute injury. In particular, our laboratory examines the role of microglial activation and the endogenous CNS inflammatory response in exacerbating secondary injury following acute brain insult. Much of the in vitro work in this laboratory is dedicated to elucidating cellular responses to injury with the ultimate goal of exploring new therapeutic interventions in the clinical setting of stroke, intracranial hemorrhage, and closed head injury.

In conjunction with the Multidisciplinary Neuroprotection Laboratories, we also focus on clinically relevant small animal models of acute CNS injury. For example, we have recently characterized murine models of closed head injury, subarachnoid hemorrhage, intracranial hemorrhage and perinatal hypoxia-ischemia, in addition to the standard rodent models of focal stroke and transient forebrain ischemia. Recently we have adapted several of these models from the rat to the mouse to take advantage of murine transgenic technology. The objective of these studies are two-fold: to gain better insight into the cellular responses and pathophysiology of acute brain injury, and to test novel therapeutic strategies for clinical translation. In both cell culture systems and animal models, our primary focus is on examining the role of oxidative stress and inflammatory mechanism in mediating brain injury following acute brain insult, and examining the neuroprotective effects of endogenous apolipoprotein E in the injured mammalian central nervous system.

Our laboratory is committed to translational research, and has several active clinical research protocols, which are designed to bring the research performed in the Multidisciplinary Research Laboratories to the clinical arena. These protocols are centered around patients following stroke and acute brain injury, and are primarily based out of the Emergency Room and Neurocritical Care Unit. For example, we are currently examining the role of inflammatory mediators for use as a point-of-care diagnostic marker following stroke, intracranial hemorrhage, and closed head injury. We have recently translated a novel apoE mimetic from the preclinical setting to a multi center Phase 2 trial evaluating efficacy in intracranial hemorrhage. We are also examining the functional role of different polymorphisms of of inflammatory cytokines in the setting of acute brain injury and neurological dysfunction following cardiopulmonary bypass.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.