A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks.

dc.contributor.author

Alemi, Alireza

dc.contributor.author

Baldassi, Carlo

dc.contributor.author

Brunel, Nicolas

dc.contributor.author

Zecchina, Riccardo

dc.contributor.editor

Latham, Peter E

dc.coverage.spatial

United States

dc.date.accessioned

2017-08-01T13:17:36Z

dc.date.available

2017-08-01T13:17:36Z

dc.date.issued

2015-08

dc.description.abstract

Understanding the theoretical foundations of how memories are encoded and retrieved in neural populations is a central challenge in neuroscience. A popular theoretical scenario for modeling memory function is the attractor neural network scenario, whose prototype is the Hopfield model. The model simplicity and the locality of the synaptic update rules come at the cost of a poor storage capacity, compared with the capacity achieved with perceptron learning algorithms. Here, by transforming the perceptron learning rule, we present an online learning rule for a recurrent neural network that achieves near-maximal storage capacity without an explicit supervisory error signal, relying only upon locally accessible information. The fully-connected network consists of excitatory binary neurons with plastic recurrent connections and non-plastic inhibitory feedback stabilizing the network dynamics; the memory patterns to be memorized are presented online as strong afferent currents, producing a bimodal distribution for the neuron synaptic inputs. Synapses corresponding to active inputs are modified as a function of the value of the local fields with respect to three thresholds. Above the highest threshold, and below the lowest threshold, no plasticity occurs. In between these two thresholds, potentiation/depression occurs when the local field is above/below an intermediate threshold. We simulated and analyzed a network of binary neurons implementing this rule and measured its storage capacity for different sizes of the basins of attraction. The storage capacity obtained through numerical simulations is shown to be close to the value predicted by analytical calculations. We also measured the dependence of capacity on the strength of external inputs. Finally, we quantified the statistics of the resulting synaptic connectivity matrix, and found that both the fraction of zero weight synapses and the degree of symmetry of the weight matrix increase with the number of stored patterns.

dc.identifier

https://www.ncbi.nlm.nih.gov/pubmed/26291608

dc.identifier

PCOMPBIOL-D-15-00533

dc.identifier.eissn

1553-7358

dc.identifier.uri

https://hdl.handle.net/10161/15109

dc.language

eng

dc.publisher

Public Library of Science (PLoS)

dc.relation.ispartof

PLoS Comput Biol

dc.relation.isversionof

10.1371/journal.pcbi.1004439

dc.subject

Algorithms

dc.subject

Computational Biology

dc.subject

Computer Simulation

dc.subject

Memory

dc.subject

Models, Neurological

dc.subject

Nerve Net

dc.subject

Neural Networks (Computer)

dc.subject

Neurons

dc.title

A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks.

dc.type

Journal article

duke.contributor.orcid

Brunel, Nicolas|0000-0002-2272-3248

pubs.author-url

https://www.ncbi.nlm.nih.gov/pubmed/26291608

pubs.begin-page

e1004439

pubs.issue

8

pubs.organisational-group

Basic Science Departments

pubs.organisational-group

Duke

pubs.organisational-group

Neurobiology

pubs.organisational-group

Physics

pubs.organisational-group

School of Medicine

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.publication-status

Published online

pubs.volume

11

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks.pdf
Size:
1.85 MB
Format:
Adobe Portable Document Format