Maximal exercise increases mucosal associated invariant T cell frequency and number in healthy young men.

Loading...
Thumbnail Image

Date

2017-09-01

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

137
views
407
downloads

Citation Stats

Attention Stats

Abstract

PURPOSE: Mucosal associated invariant T (MAIT) cells have properties of the innate and acquired immune systems. While the response to vigorous exercise has been established for most leukocytes, MAIT cells have not been investigated. Therefore, the purpose was to determine if MAIT cell lymphocytosis occurs with acute maximal aerobic exercise and if this response is influenced by exercise duration, cardiovascular fitness, or body composition. METHODS: Twenty healthy young males with moderate fitness levels performed an extended graded exercise test until volitional fatigue. Peripheral blood mononuclear cells were isolated from venous blood obtained prior and immediately after exercise and were labeled to identify specific T cell populations using flow cytometry. RESULTS: The percentage of MAIT cells relative to total T cells significantly increased from 3.0 to 3.8% and absolute MAIT cell counts increased by 2.2-fold following maximal exercise. MAIT cell subpopulation proportions were unchanged with exercise. Within cytotoxic T lymphocytes (CTL), MAIT cells consisted of 8% of these cells and this remained constant after exercise. MAIT cell counts and changes with exercise were not affected by body composition, VO2peak, or exercise duration. CONCLUSIONS: Maximal exercise doubled MAIT cell numbers and showed preferential mobilization within total T cells but the response was not influenced by fitness levels, exercise duration, or body composition. These results suggest that acute exercise could be used to offset MAIT cell deficiencies observed with certain pathologies. MAIT cells also make up a substantial proportion of CTLs, which may have implications for cytotoxicity assays using these cells.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1007/s00421-017-3704-z

Publication Info

Hanson, Erik D, Eli Danson, Catriona V Nguyen-Robertson, Jackson J Fyfe, Nigel K Stepto, David B Bartlett and Samy Sakkal (2017). Maximal exercise increases mucosal associated invariant T cell frequency and number in healthy young men. Eur J Appl Physiol. 10.1007/s00421-017-3704-z Retrieved from https://hdl.handle.net/10161/15609.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Bartlett

David Bruce Bartlett

Adjunct Assistant Professor in the Department of Medicine

David Bartlett is an Assistant Professor in the Department of Medicine, Division of Medical Oncology. He earned his PhD in Immunology from the University of Birmingham, England where he specialized in the effects of exercise and lifestyles on immune function and systemic inflammation in the elderly. He was awarded a coveted Marie Curie Outgoing Fellowship from the European Union which brought him to Duke under the guidance of William Kraus, MD where he assessed the immunological and physiological responses of exercise training in patients with prediabetes and rheumatoid arthritis. His laboratory studies the effects of exercise and energy balance on immune function and physiology of patient groups including cancer, arthritis and diabetes. His research program is focused on human studies employing a wide range of techniques including human physiological testing, exercise training to in vitro and ex vivo cellular assays. 


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.