Reduced-order deep learning for flow dynamics. The interplay between deep learning and model reduction

dc.contributor.author

Wang, Min

dc.contributor.author

Cheung, Siu Wun

dc.contributor.author

Leung, Wing Tat

dc.contributor.author

Chung, Eric T

dc.contributor.author

Efendiev, Yalchin

dc.contributor.author

Wheeler, Mary

dc.date.accessioned

2020-04-05T16:08:39Z

dc.date.available

2020-04-05T16:08:39Z

dc.date.issued

2020-01

dc.date.updated

2020-04-05T16:08:37Z

dc.identifier.issn

0021-9991

dc.identifier.issn

1090-2716

dc.identifier.uri

https://hdl.handle.net/10161/20371

dc.language

en

dc.publisher

Elsevier BV

dc.relation.ispartof

Journal of Computational Physics

dc.relation.isversionof

10.1016/j.jcp.2019.108939

dc.subject

Science & Technology

dc.subject

Technology

dc.subject

Physical Sciences

dc.subject

Computer Science, Interdisciplinary Applications

dc.subject

Physics, Mathematical

dc.subject

Computer Science

dc.subject

Physics

dc.subject

Multiscale

dc.subject

Upscaling

dc.subject

Porous media

dc.subject

Deep learning

dc.subject

Dynamics

dc.subject

FINITE-ELEMENT METHODS

dc.subject

MULTISCALE MODEL

dc.subject

UNCERTAINTY QUANTIFICATION

dc.subject

WAVE-PROPAGATION

dc.subject

HOMOGENIZATION

dc.subject

EFFICIENT

dc.subject

NETWORKS

dc.title

Reduced-order deep learning for flow dynamics. The interplay between deep learning and model reduction

dc.type

Journal article

duke.contributor.orcid

Wang, Min|0000-0002-5639-6345

pubs.begin-page

108939

pubs.end-page

108939

pubs.organisational-group

Trinity College of Arts & Sciences

pubs.organisational-group

Mathematics

pubs.organisational-group

Duke

pubs.publication-status

Published

pubs.volume

401

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0021999119306448-main.pdf
Size:
2.99 MB
Format:
Adobe Portable Document Format
Description:
Published version