Postoperative changes in cognition and cerebrospinal fluid neurodegenerative disease biomarkers.
Date
2022-02
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Objective
Numerous investigators have theorized that postoperative changes in Alzheimer's disease neuropathology may underlie postoperative neurocognitive disorders. Thus, we determined the relationship between postoperative changes in cognition and cerebrospinal (CSF) tau, p-tau-181p, or Aβ levels after non-cardiac, non-neurologic surgery in older adults.Methods
Participants underwent cognitive testing before and 6 weeks after surgery, and lumbar punctures before, 24 h after, and 6 weeks after surgery. Cognitive scores were combined via factor analysis into an overall cognitive index. In total, 110 patients returned for 6-week postoperative testing and were included in the analysis.Results
There was no significant change from before to 24 h or 6 weeks following surgery in CSF tau (median [median absolute deviation] change before to 24 h: 0.00 [4.36] pg/mL, p = 0.853; change before to 6 weeks: -1.21 [3.98] pg/mL, p = 0.827). There were also no significant changes in CSF p-tau-181p or Aβ over this period. There was no change in cognitive index (mean [95% CI] 0.040 [-0.018, 0.098], p = 0.175) from before to 6 weeks after surgery, although there were postoperative declines in verbal memory (-0.346 [-0.523, -0.170], p = 0.003) and improvements in executive function (0.394, [0.310, 0.479], p < 0.001). There were no significant correlations between preoperative to 6-week postoperative changes in cognition and CSF tau, p-tau-181p, or Aβ42 changes over this interval (p > 0.05 for each).Interpretation
Neurocognitive changes after non-cardiac, non-neurologic surgery in the majority of cognitively healthy, community-dwelling older adults are unlikely to be related to postoperative changes in AD neuropathology (as assessed by CSF Aβ, tau or p-tau-181p levels or the p-tau-181p/Aβ or tau/Aβ ratios).Trial registration
clinicaltrials.gov (NCT01993836).Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Berger, Miles, Jeffrey N Browndyke, Mary Cooter Wright, Chloe Nobuhara, Melody Reese, Leah Acker, W Michael Bullock, Brian J Colin, et al. (2022). Postoperative changes in cognition and cerebrospinal fluid neurodegenerative disease biomarkers. Annals of clinical and translational neurology, 9(2). pp. 155–170. 10.1002/acn3.51499 Retrieved from https://hdl.handle.net/10161/25543.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke

Miles Berger
My research team focuses on 3 areas:
1) We are interested in the mechanisms of postoperative neurocognitive disorders such as delirium, and the relationship between these disorders and Alzheimer's Disease and Related Dementias (ADRD). Towards these ends, we use a combination of methods including pre and postoperative CSF and blood sampling, functional neuroimaging, EEG recordings, rigorous biochemical assays, and cognitive testing and delirium screening. In the long run, this work has the potential to help us improve long term neurocognitive outcomes for the more than 20 million Americans over age 60 who undergo anesthesia and surgery each year.
2) We are interested in the idea that altered anesthetic-induced brain EEG waveforms can serve as indicators of specific types of preclinical/prodromal neurodegenerative disease pathology, specific cognitive domain deficits, and postoperative delirium risk. We are studying this topic in the ALADDIN study, a 250 patient prospective cohort study in older surgical patients at Duke. Many people have viewed anesthesia and surgery as a "stress test" for the aging brain; we hope that this work will help us learn how to develop a real-time EEG readout of this "perioperative stress test" for the aging brain, just as ECG analysis can provide a real-time readout of cardiac treadmill stress tests.
3) We are interested in how the APOE4 allele damages brain circuitry throughout the adult lifespan, and how this contributes to increased risk of late onset Alzheimer's disease as well as worse outcomes following other acute brain disorders such as stroke and traumatic brain injury (TBI). In particular, we are investigating the hypothesis that the APOE4 allele leads to increased CNS complement activation throughout adult life, which then contributes to increased synaptic phagocytosis and long term neurocognitive decline. We are also studying whether acutely modulating APOE signaling in older surgical patients with the APOE mimetic peptide CN-105 is sufficient to block postoperative CSF neuroinflammation and complement activation.
Our work is transdisciplinary, and thus our team includes individuals with diverse scientific and clinical backgrounds, ranging from neuropsychology and neuroimaging to proteomics, flow cytometry and behavioral neuroscience in animal models. What unites us is the desire to better understand mechanisms of age-dependent brain dysfunction, both in the perioperative setting and in APOE4 carriers.

Jeffrey Nicholas Browndyke
Dr. Browndyke is an Associate Professor of Behavioral Health & Neurosciences in the Department of Psychiatry & Behavioral Sciences. He has a secondary appointment as Assistant Professor of Cardiovascular & Thoracic Surgery.
Dr. Browndyke's research interests involve the use of advanced neurocognitive and neuroimaging techniques for perioperative contributions to delirium and later dementia risk, monitoring of late-life neuropathological disease progression, and intervention/treatment outcomes. His research also involves novel telehealth methods for remote neurocognitive evaluation and implementation of non-invasive neuromodulatory techniques to assist in postoperative recovery and dementia risk reduction.
Dr. Browndyke's clinical expertise is focused upon geriatric neuropsychology with an emphasis in the assessment, diagnosis, and treatment of dementia and related disorders in adults and US veteran patient populations.

Leah Acker

William Michael Bullock

Michael Devinney
My work uses translational neuroscience approaches, such as cerebrospinal fluid molecular assays, sleep EEG, cognitive testing, and delirium assessment to identify mechanisms of delirium. Delirium is a syndrome of disrupted attention and consciousness that occurs in ~20% of the >19 million older surgery patients and ~50% of the >5 million intensive care unit (ICU) patients in the United States every year. Delirium is also associated with increased risk for Alzheimer’s disease and related dementias (ADRD), yet there are no FDA-approved drugs to prevent it, due to a major gap in our understanding of its underlying mechanisms. Our current work aims to discover potential mechanisms of delirium that could be targeted in future studies. We have recently found that increased blood-brain barrier dysfunction is associated with postoperative delirium, but it is unknown what inflammatory mediators actually cross the disrupted blood-brain barrier to drive delirium. Using mass spectrometry proteomics, we are examining the relationship of proteins and inflammatory markers found in the cerebrospinal fluid 24-hours following surgery with postoperative delirium. We are also interested in strategies that potentially protect the blood-brain barrier following surgery. Since sleep disruptions can cause blood-brain barrier dysfunction, we are conducting a study to determine the efficacy of suvorexant to improve postoperative sleep and reduce delirium severity in older surgical patients. Finally, we are working to extend these investigations to ICU patients, who are often more severely affected by delirium and more frequently develop long-term sequelae such as post-ICU long-term cognitive impairment (that is similar in magnitude to Alzheimer’s disease and related dementias).

Eugene William Moretti
Research efforts are focused primarily in the area of functional genomics. Work has centered on investigating genetic polymorphisms in the surgical intensive care population that would predispose one to the development of the sepsis syndrome. As an extension of this work, there is ongoing investigation working to identify genetically susceptible populations at risk for developing various types of perioperative organ dysfunction. Parallel studies involve identification of a panel of biomarkers that would enable early diagnosis and intervention for those patients, both surgical and non-surgical that develop the sepsis syndrome. There is also active investigation in the human pharmacology laboratory in the department of anesthesiology involving the phase 1 testing of novel pharmaceutical agents in healthy volunteers.

Judd Wendell Moul
Dr Judd Moul joined the Duke faculty in mid 2004 after a career in the US Army Medical Corps mainly at Walter Reed Army Medical Center. He is a retired colonel and a noted researcher and clinician in the area of prostate cancer and is a urologic oncologist. He served as the division chief of Duke Division of Urology from 2004 to 2011 and was named the James H Semans MD Professor of surgery in 2009 becoming Duke's first named endowed chair for urology. He was awarded the Gold Cystoscope Award from the American Urologic Association as well as Castle Connelly Physician of the year for Clinical Medicine in 2009. He has performed more than 1300 radical prostatectomies since joining the Duke faculty and is committed to outcomes research on this series and in other areas of prostate cancer. He served as the Editor for Prostate Cancer and Prostatic Dissease, a Nature Medicine journal, for more than a decade and is a popular speaker and lecturer having been visiting professor and keynote speaker throughout the US and the World. He is very committed to training residents and mentoring students and trainees.

Brian Joseph Ohlendorf

Daniel Todd Laskowitz
Our laboratory uses molecular biology, cell culture, and animal modeling techniques to examine the CNS response to acute injury. In particular, our laboratory examines the role of microglial activation and the endogenous CNS inflammatory response in exacerbating secondary injury following acute brain insult. Much of the in vitro work in this laboratory is dedicated to elucidating cellular responses to injury with the ultimate goal of exploring new therapeutic interventions in the clinical setting of stroke, intracranial hemorrhage, and closed head injury.
In conjunction with the Multidisciplinary Neuroprotection Laboratories, we also focus on clinically relevant small animal models of acute CNS injury. For example, we have recently characterized murine models of closed head injury, subarachnoid hemorrhage, intracranial hemorrhage and perinatal hypoxia-ischemia, in addition to the standard rodent models of focal stroke and transient forebrain ischemia. Recently we have adapted several of these models from the rat to the mouse to take advantage of murine transgenic technology. The objective of these studies are two-fold: to gain better insight into the cellular responses and pathophysiology of acute brain injury, and to test novel therapeutic strategies for clinical translation. In both cell culture systems and animal models, our primary focus is on examining the role of oxidative stress and inflammatory mechanism in mediating brain injury following acute brain insult, and examining the neuroprotective effects of endogenous apolipoprotein E in the injured mammalian central nervous system.
Our laboratory is committed to translational research, and has several active clinical research protocols, which are designed to bring the research performed in the Multidisciplinary Research Laboratories to the clinical arena. These protocols are centered around patients following stroke and acute brain injury, and are primarily based out of the Emergency Room and Neurocritical Care Unit. For example, we are currently examining the role of inflammatory mediators for use as a point-of-care diagnostic marker following stroke, intracranial hemorrhage, and closed head injury. We have recently translated a novel apoE mimetic from the preclinical setting to a multi center Phase 2 trial evaluating efficacy in intracranial hemorrhage. We are also examining the functional role of different polymorphisms of of inflammatory cytokines in the setting of acute brain injury and neurological dysfunction following cardiopulmonary bypass.

Heather Elizabeth Whitson
Dr. Whitson's research is focused on improving care options and resilience for people with multiple chronic conditions. In particular, she has interest and expertise related to the link between age-related changes in the eye and brain (e.g., How does late-life vision loss impact the aging brain or cognitive outcomes? Is Alzheimer's disease associated with distinctive changes in the retina, and could such changes help diagnose Alzheimer's disease early in its course?). Dr. Whitson leads a collaborative Alzheimer's Disease initiative that brings together investigators from Duke University and the University of North Carolina (UNC) at Chapel Hill, with a bold vision to transform dementia research and care across Eastern North Carolina. Dr. Whitson is also interested in improving health services to better meet the needs of medically complex patients. Within the Duke Aging Center, she leads research efforts aimed at promoting resilience to late-life stressors (e.g., surgery, sensory loss, infection). She has developed a novel rehabilitation model for people with co-existing vision and cognitive deficits, and she is part of a inter-disciplinary team seeking to improve peri-operative outcomes for frail or at-risk seniors who must undergo surgery. As a co-leader of a national resilience collaborative, she seeks to better understand the biological and psychological factors that determine how well we "bounce back" after health stressors.

Harvey Jay Cohen
Dr. Cohen's research program includes clinical research relating to aspects of the pathways to functional decline and reilience with aging, geriatric assessment, and cancer and anemia in the elderly.
Pathways to functional decline are being explored through the NIA funded Claude Pepper Older Americans Independence Center, and includes studies of the contributions of age related physiologic change, in particular changes in inflammatory parameters, comorbid diseases and conditions, environment, genetics, and the interactionas among them. Data are derived from several current studies as well as previously collected data sets from the Established Populations for Epidemiologic Studies of the Elderly (EPESE), National Long Term Care Survey, and the Chinese Longevity Study (with Dr. Zeng Yi). Previous work has demonstrated the important contributions of age related inflammation and coagulation activation to functional status. He is Co-PI of the Pepper Center Physical Performance Across the LifeSpan (PALS) study, which is a longitudinal cohort study of community dwelling adults from age 30-90+and includes functional measures and biomarkers on inflammation and metabolism.
Geriatric assessment approaches have been studied in a number of randomized and controlled studies and work is now concentrating on the application of Comprehensive Geriatric Assessment tools to the evaluation and treatment of elderly patients with cancer. This is an extension and continuation of a long standing interest in geriatric oncology. Previous studies have elucidated age-related patterns of disease presentation, treatment approaches, clinical trials, survivorship, quality of life, impact of comrobidities and functional outcomes. Dr. Cohen was co-chair, and now member of the Cancer in the Older Adult Committee of the Alliance for Clinical Trials in Oncology (ALLIANCE). A number of active studies and ongoing data bases aree being utilized to address these questions.
Anemia in the older adult is being addressed through an NIA funded U01 consortium (Dr. Cohen Co-PI). the current main study is an observational study followed by a pragmatic treatment trial for anemia in older adults with CHF, in collaboration with the Cardiovascular Research Network (CVRN) of the Health services research network (HSRN)

Joseph P. Mathew
Current research interests include:
1. The relationship between white matter patency, functional connectivity (fMRI) and neurocognitive function following cardiac surgery.
2. The relationship between global and regional cortical beta-amyloid deposition and postoperative cognitive decline.
3. The effect of lidocaine infusion upon neurocognitive function following cardiac surgery.
4. The association between genotype and outcome after cardiac surgery.
5. Atrial fibrillation following cardiopulmonary bypass.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.