Interleukin-13 induces collagen type-1 expression through matrix metalloproteinase-2 and transforming growth factor-β1 in airway fibroblasts in asthma.

Loading...
Thumbnail Image

Date

2014-02

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

22
views
26
downloads

Citation Stats

Abstract

Airway remodelling is a feature of asthma that contributes to loss of lung function. One of the central components of airway remodelling is subepithelial fibrosis. Interleukin (IL)-13 is a key T-helper 2 cytokine and is believed to be the central mediator of allergic asthma including remodelling, but the mechanism driving the latter has not been elucidated in human asthma. We hypothesised that IL-13 stimulates collagen type-1 production by the airway fibroblast in a matrix metalloproteinase (MMP)- and transforming growth factor (TGF)-β1-dependent manner in human asthma as compared to healthy controls. Fibroblasts were cultured from endobronchial biopsies in 14 subjects with mild asthma and 13 normal controls that underwent bronchoscopy. Airway fibroblasts were treated with various mediators including IL-13 and specific MMP-inhibitors. IL-13 significantly stimulated collagen type-1 production in asthma compared to normal controls. Inhibitors of MMP-2 significantly attenuated collagen production in asthma but had no effect in normal controls. IL-13 significantly increased total and active forms of TGF-β1, and this activation was blocked using an MMP-2 inhibitor. IL-13 activated endogenous MMP-2 in asthma patients as compared to normal controls. In an ex vivo model, IL-13 potentiates airway remodelling through a mechanism involving TGF-β1 and MMP-2. These effects provide insights into the mechanism involved in IL-13-directed airway remodelling in asthma.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1183/09031936.00068712

Publication Info

Firszt, Rafael, Dave Francisco, Tony D Church, Joseph M Thomas, Jennifer L Ingram and Monica Kraft (2014). Interleukin-13 induces collagen type-1 expression through matrix metalloproteinase-2 and transforming growth factor-β1 in airway fibroblasts in asthma. The European respiratory journal, 43(2). pp. 464–473. 10.1183/09031936.00068712 Retrieved from https://hdl.handle.net/10161/25436.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Ingram

Jennifer Leigh Ingram

Associate Professor in Medicine

Dr. Ingram's research interests focus on the study of airway remodeling in human asthma. Proliferation, migration, and invasion of airway fibroblasts are key features of airway remodeling that contribute to diminished lung function over time. Dr. Ingram uses molecular biology approaches to define the effects of interleukin-13 (IL-13), a cytokine abundantly produced in the asthmatic airway, in the human airway fibroblast. She has identified important regulatory functions of several proteins prevalent in asthma that control fibroblast growth and pro-fibrotic growth factor production in response to IL-13. By understanding these pathways and their role in human asthma and the chronic effects of airway remodeling, novel treatment strategies may be developed.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.