Paternal cannabis extract exposure in rats: Preconception timing effects on neurodevelopmental behavior in offspring.

Abstract

Maternal toxicant exposure during gestation can have deleterious effects on neurobehavioral development of the offspring. The potential risks engendered by paternal toxicant exposure prior to conception have been largely understudied. Recently, we found that chronic THC exposure prior to conception in male rats causes long-lasting behavioral impairment in their offspring. The current study examined the effects of chronic preconception exposure to cannabis smoke extract in Sprague-Dawley rats at two different phases in sperm development. One group received daily subcutaneous (sc) injections of THC in cannabis extract at 4 mg/kg/day for 28 days until three days prior to mating with untreated females (late exposure group). Another group received the same regimen except they underwent 56 days of drug abstinence prior to mating (early exposure group). These were compared with a control group treated with vehicle. The offspring underwent a battery of tests for behavioral function to assess motor, emotional and cognitive function. On the elevated plus maze test, the offspring of both paternal cannabis smoke extract (CSE) exposure groups had significantly more time on the open arms than control offspring, indicative of greater risk-taking behavior. No significant main effects of CSE exposure were seen on adolescent or adult locomotor activity in the figure-8 apparatus. In the novel object recognition test, there was a significantly greater drop-off in novel object preference across the session in the male, but not female offspring of the late exposure group. There was also a sex-selective effect of paternal CSE treatment in the 16-arm radial maze test of memory function. Female offspring of the late exposure group had significantly more working memory errors than control females in the first half of the 12-session training sequence. No significant effects were seen in the operant visual signal sustained detection test of attention. This study shows that there are long-lasting behavioral consequences of preconception CSE exposure through the paternal lineage in rats.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1016/j.neuro.2020.10.007

Publication Info

Holloway, Zade R, Andrew B Hawkey, Alexandra K Torres, Janequia Evans, Erica Pippen, Hannah White, Vaishnavi Katragadda, Bruny Kenou, et al. (2020). Paternal cannabis extract exposure in rats: Preconception timing effects on neurodevelopmental behavior in offspring. Neurotoxicology, 81. pp. 180–188. 10.1016/j.neuro.2020.10.007 Retrieved from https://hdl.handle.net/10161/29495.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Murphy

Susan Kay Murphy

Associate Professor in Obstetrics and Gynecology

Dr. Murphy is a tenured Associate Professor in the Department of Obstetrics and Gynecology and serves as Chief of the Division of Reproductive Sciences. As a molecular biologist with training in human epigenetics, her research interests are largely centered around the role of epigenetic modifications in health and disease. 

Dr. Murphy has ongoing projects on gynecologic malignancies, including approaches to eradicate ovarian cancer cells that survive chemotherapy and later give rise to recurrent disease. Dr. Murphy is actively involved in many collaborative projects relating to the Developmental Origins of Health and Disease (DOHaD).

Her lab is currently working on preconception environmental exposures in males, particularly on the impact of cannabis on the sperm epigenome and the potential heritability of these effects. They are also studying the epigenetic and health effects of in utero exposures, with primary focus on children from the Newborn Epigenetics STudy (NEST), a pregnancy cohort she co-founded who were recruited from central North Carolina between 2005 and 2011. Dr. Murphy and her colleagues continue to follow NEST children to determine relationships between prenatal exposures and later health outcomes.

Rezvani

Amir H. Rezvani

Professor Emeritus in Psychiatry and Behavioral Sciences

My research and teaching interests have been primarily focused on the following areas:

Alcoholism: I work with "alcoholic" rats with genetic predisposition!" We use selectively-bred alcohol preferring rats as an animal model of human alcoholism for developing better pharmacological treatments for alcoholism. Recently, we are working on several novel promising "anti-craving" compounds for the treatment of alcoholism. We are also studying the interaction between alcohol drinking and nicotine intake.

Nicotine Addiction: We have been studying age and sex differences in i.v. nicotine self-administration in rats. We have found that pattern of drug intake is both age- and sex-dependent. Our lab is also exploring different neuronal targets for developing better pharmacologic treatment for nicotine addiction.

Sustained Attention: Another aspect of our research is studying the role of the neuronal nicotinic and other neuronal systems in sustained attention using a rodent model. We have shown, nicotine (not smoking!) and nicotinic compounds improve attention in rats. A majority of people with schizophrenia smoke and they smoke heavily. Thus, it is important to understand the interaction of antipsychotic medications and nicotine in sustained attention. This has been another aspect of our research with interesting results. Presently, we are testing novel nicotinic compounds for improving pharmacologically-impaired sustained attention.

Teaching: I love to teach and interact with students. Since arriving at Duke in 1999, I have been team-teaching the popular alcohol course (Psych 206-01R; Alcohol: Brain, Society and Individual). I also enjoy mentoring undergrad students who are interested in science and enjoy working in the lab with cute little creatures!.

Community: I am a member of the Board of Directors of Triangle Residential Options for Substance Abusers (TROSA), a self-supported therapeutic community in Durham. I also give seminars and workshops on addiction around the country.

Levin

Edward Daniel Levin

Professor in Psychiatry and Behavioral Sciences

Dr. Levin is Chief of the Neurobehavioral Research Lab in the Psychiatry Department of Duke University Medical Center. His primary academic appointment is as Professor in the Department of Psychiatry and Behavioral Sciences. He also has secondary appointments in the Department Pharmacology and Cancer Biology, the Department of Psychological and Brain Sciences and the Nicholas School of the Environment at Duke. His primary research effort is to understand basic neural interactions underlying cognitive function and addiction and to apply this knowledge to better understand cognitive dysfunction and addiction disorders and to develop novel therapeutic treatments.

The three main research components of his laboratory are focused on the themes of the basic neurobiology of cognition and addiction, neurobehavioral toxicology and the development of novel therapeutic treatments for cognitive dysfunction and substance abuse. Currently, our principal research focus concerns nicotine. We have documented the basic effects of nicotine on learning memory and attention as well as nicotine self-administration. We are continuing with more mechanistic studies in rat models using selective lesions, local infusions and neurotransmitter interaction studies. We have found that nicotine improves memory performance not only in normal rats, but also in rats with lesions of hippocampal and basal forebrain connections. We are concentrating on alpha7 and alpha4beta2 nicotinic receptor subtypes in the hippocampus, amygdala , thalamus and frontal cortex and how they interact with dopamine D1 and D2 and glutamate NMDA systems with regard to memory and addiction. I am also conducting studies on human cognitive behavior. We have current studies to assess nicotine effects on attention, memory and mental processing speed in schizophrenia, Alzheimer's Disease and Attention Deficit Hyperactivity Disorder. In the area of neurobehavioral toxicology, I have continuing projects to characterize the adverse effects of prenatal and adolescent nicotine exposure. Our primary project in neurobehavioral toxicology focuses on the cognitive deficits caused by the marine toxins. The basic and applied aims of our research complement each other nicely. The findings concerning neural mechanisms underlying cognitive function help direct the behavioral toxicology and therapeutic development studies, while the applied studies provide important functional information concerning the importance of the basic mechanisms under investigation.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.