Interleukin-1β gene variants are associated with QTc interval prolongation following cardiac surgery: a prospective observational study.
Date
2016-04
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Background
We characterized cardiac surgery-induced dynamic changes of the corrected QT (QTc) interval and tested the hypothesis that genetic factors are associated with perioperative QTc prolongation independent of clinical and procedural factors.Methods
All study subjects were ascertained from a prospective study of patients who underwent elective cardiac surgery during August 1999 to April 2002. We defined a prolonged QTc interval as > 440 msec, measured from 24-hr pre- and postoperative 12-lead electrocardiograms. The association of 37 single nucleotide polymorphisms (SNPs) in 21 candidate genes -involved in modulating arrhythmia susceptibility pathways with postoperative QTc changes- was investigated in a two-stage design with a stage I cohort (n = 497) nested within a stage II cohort (n = 957). Empirical P values (Pemp) were obtained by permutation tests with 10,000 repeats.Results
After adjusting for clinical and procedural risk factors, we selected four SNPs (P value range, 0.03-0.1) in stage I, which we then tested in the stage II cohort. Two functional SNPs in the pro-inflammatory cytokine interleukin-1β (IL1β), rs1143633 (odds ratio [OR], 0.71; 95% confidence interval [CI], 0.53 to 0.95; Pemp = 0.02) and rs16944 (OR, 1.31; 95% CI, 1.01 to 1.70; Pemp = 0.04), remained independent predictors of postoperative QTc prolongation. The ability of a clinico-genetic model incorporating the two IL1B polymorphisms to classify patients at risk for developing prolonged postoperative QTc was superior to a clinical model alone, with a net reclassification improvement of 0.308 (P = 0.0003) and an integrated discrimination improvement of 0.02 (P = 0.000024).Conclusion
The results suggest a contribution of IL1β in modulating susceptibility to postoperative QTc prolongation after cardiac surgery.Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Kertai, Miklos D, Yunqi Ji, Yi-Ju Li, Joseph P Mathew, James P Daubert, Mihai V Podgoreanu and undefined PEGASUS Investigative Team (2016). Interleukin-1β gene variants are associated with QTc interval prolongation following cardiac surgery: a prospective observational study. Canadian journal of anaesthesia = Journal canadien d'anesthesie, 63(4). pp. 397–410. 10.1007/s12630-015-0576-8 Retrieved from https://hdl.handle.net/10161/29746.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Yi-Ju Li
My research interest is in statistical genetics, including statistical method development and its application for understanding the genetic predisposition of human complex diseases. Here is the list of research topics:
- Statistical genetics: development of family-based association methods for quantitative traits with or without censoring and for detecting X-linked genes for disease risk. With the availability of next generation sequencing data, we have ongoing projects to develop the association methods for testing rare variants for different phenotypic measures.
- Genetics of Alzheimer's disease (AD) and Fuchs endothelial corneal dystrophy (FECD).
- Genetic basis of age-at-onset of Alzheimer disease.
- Peri-operative genomic studies. Investigate the genetic risk factors for postoperative outcomes of patients underwent non-emergent coronary artery bypass grafting with cardiopulmonary bypass.
Joseph P. Mathew
Current research interests include:
1. The relationship between white matter patency, functional connectivity (fMRI) and neurocognitive function following cardiac surgery.
2. The relationship between global and regional cortical beta-amyloid deposition and postoperative cognitive decline.
3. The effect of lidocaine infusion upon neurocognitive function following cardiac surgery.
4. The association between genotype and outcome after cardiac surgery.
5. Atrial fibrillation following cardiopulmonary bypass.
James Patrick Daubert
Atrial fibrillation ablation.
Cardiac resynchronization therapy.
Implantable defibrillator, including inappropriate shocks.
Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy
Hypertrophic cardiomyopathy.
Long QT syndrome
Sudden cardiac arrest and resuscitation.
Ventricular tachycardia
Mihai V. Podgoreanu
Basic-Translational:
1. Systems biology approaches to modeling perioperative cardiovascular injury and adaptation.
2. Mechanisms of perioperative myocardial injury; functional genomics applied to perioperative myocardial injury.
3. Metabolic consequences of perioperative myocardial ischemia-reperfusion injury.
4. Animal models and comparative genomic approaches to study perioperative myocardial ischemia-reperfusion injury.
5. Functional genomics of vein graft disease.
6. Animal models of vein graft disease.
7. Genetic association studies in perioperative medicine.
8. Clinico-genomic risk prediction models for perioperative and long-term adverse cardiovascular outcomes following cardiac surgery.
Clinical:
9. Intraoperative quantification of tissue perfusion by contrast echocardiography.
10. Use of myocardial tissue deformation indices to characterize perioperative ventricular dysfunction/stunning
11. 3-D echocardiographic evaluation of the right ventricle
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.