Optimal properties of analog perceptrons with excitatory weights.

Loading...
Thumbnail Image

Date

2013

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

100
views
101
downloads

Citation Stats

Abstract

The cerebellum is a brain structure which has been traditionally devoted to supervised learning. According to this theory, plasticity at the Parallel Fiber (PF) to Purkinje Cell (PC) synapses is guided by the Climbing fibers (CF), which encode an 'error signal'. Purkinje cells have thus been modeled as perceptrons, learning input/output binary associations. At maximal capacity, a perceptron with excitatory weights expresses a large fraction of zero-weight synapses, in agreement with experimental findings. However, numerous experiments indicate that the firing rate of Purkinje cells varies in an analog, not binary, manner. In this paper, we study the perceptron with analog inputs and outputs. We show that the optimal input has a sparse binary distribution, in good agreement with the burst firing of the Granule cells. In addition, we show that the weight distribution consists of a large fraction of silent synapses, as in previously studied binary perceptron models, and as seen experimentally.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1371/journal.pcbi.1002919

Publication Info

Clopath, Claudia, and Nicolas Brunel (2013). Optimal properties of analog perceptrons with excitatory weights. PLoS Comput Biol, 9(2). p. e1002919. 10.1371/journal.pcbi.1002919 Retrieved from https://hdl.handle.net/10161/15125.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Brunel

Nicolas Brunel

Duke School of Medicine Distinguished Professor in Neuroscience

We use theoretical models of brain systems to investigate how they process and learn information from their inputs. Our current work focuses on the mechanisms of learning and memory, from the synapse to the network level, in collaboration with various experimental groups. Using methods from
statistical physics, we have shown recently that the synaptic
connectivity of a network that maximizes storage capacity reproduces
two key experimentally observed features: low connection probability
and strong overrepresentation of bidirectionnally connected pairs of
neurons. We have also inferred `synaptic plasticity rules' (a
mathematical description of how synaptic strength depends on the
activity of pre and post-synaptic neurons) from data, and shown that
networks endowed with a plasticity rule inferred from data have a
storage capacity that is close to the optimal bound.



Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.