Dual-wavelength oblique back-illumination microscopy for the non-invasive imaging and quantification of blood in collection and storage bags.

Loading...
Thumbnail Image

Date

2018-06

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

49
views
16
downloads

Citation Stats

Abstract

There is currently no low-cost method to quantitatively assess the contents of a blood bag without breaching the bag and potentially damaging the sample. Towards this end, we adapt oblique back-illumination microscopy (OBM) to rapidly, inexpensively, and non-invasively screen blood bags for red blood cell (RBC) morphology and white blood cell (WBC) count. OBM has been recently introduced as a tomographic technique that produces high-resolution wide-field images based on phase-gradient and transmission. Here we modify this technique to include illumination at dual wavelengths to facilitate spectral analysis for cell classification. Further, we apply a modified 2D Hilbert transform to recover the phase information from the phase-gradient images for facile cell segmentation. Blood cells are classified as WBCs and RBCs, and counted based on shape, absorption spectrum, and phase profile using an automated algorithm. This work has important implications for the non-invasive assessment of (1) cell viability in storage bags for transfusion applications and (2) suitability of a cord blood collection bag for stem cell therapy applications.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1364/boe.9.002743

Publication Info

Ledwig, Patrick, Moses Sghayyer, Joanne Kurtzberg and Francisco E Robles (2018). Dual-wavelength oblique back-illumination microscopy for the non-invasive imaging and quantification of blood in collection and storage bags. Biomedical optics express, 9(6). pp. 2743–2754. 10.1364/boe.9.002743 Retrieved from https://hdl.handle.net/10161/24594.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Kurtzberg

Joanne Kurtzberg

Jerome S. Harris Distinguished Professor of Pediatrics

Dr. Kurtzberg is an internationally renowned expert in pediatric hematology/oncology, pediatric blood and marrow transplantation, umbilical cord blood banking and transplantation, and novel applications of cord blood and birthing tissues in the emerging fields of cellular therapies and regenerative medicine.   Dr. Kurtzberg serves as the Director of the Marcus Center for Cellular Cures (MC3), Director of the Pediatric Transplant and Cellular Therapy Program, Director of the Carolinas Cord Blood Bank, and Co-Director of the Stem Cell Transplant Laboratory at Duke University.  The Carolinas Cord Blood Bank is an FDA licensed public cord blood bank distributing unrelated cord blood units for donors for hematopoietic stem cell transplantation (HSCT) through the CW Bill Young Cell Transplantation Program.  The Robertson GMP Cell Manufacturing Laboratory supports manufacturing of RETHYMIC (BLA, Enzyvant, 2021), allogeneic cord tissue derived and bone marrow derived mesenchymal stromal cells (MSCs), and DUOC, a microglial/macrophage cell derived from cord blood.

Dr. Kurtzberg’s research in MC3 focuses on translational studies from bench to bedside, seeking to develop transformative clinical therapies using cells, tissues, molecules, genes, and biomaterials to treat diseases and injuries that currently lack effective treatments. Recent areas of investigation in MC3 include clinical trials investigating the safety and efficacy of autologous and allogeneic cord blood in children with neonatal brain injury – hypoxic ischemic encephalopathy (HIE), cerebral palsy (CP), and autism. Clinical trials testing allogeneic cord blood are also being conducted in adults with acute ischemic stroke. Clinical trials optimizing manufacturing and testing the safety and efficacy of cord tissue MSCs in children with autism, CP and HIE and adults with COVID-lung disease are underway. DUOC, given intrathecally, is under study in children with leukodystrophies and adults with primary progressive multiple sclerosis.

In the past, Dr. Kurtzberg has developed novel chemotherapeutic drugs for acute leukemias, assays enumerating ALDH bright cells to predict cord blood unit potency, methods of cord blood expansion, potency assays for targeted cell and tissue based therapies. Dr. Kurtzberg currently holds several INDs for investigational clinical trials from the FDA.  She has also trained numerous medical students, residents, clinical and post-doctoral fellows over the course of her career.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.