Structure and DNA-binding traits of the transition state regulator AbrB.

Abstract

The AbrB protein from Bacillus subtilis is a DNA-binding global regulator controlling the onset of a vast array of protective functions under stressful conditions. Such functions include biofilm formation, antibiotic production, competence development, extracellular enzyme production, motility, and sporulation. AbrB orthologs are known in a variety of prokaryotic organisms, most notably in all infectious strains of Clostridia, Listeria, and Bacilli. Despite its central role in bacterial response and defense, its structure has been elusive because of its highly dynamic character. Orienting its N- and C-terminal domains with respect to one another has been especially problematic. Here, we have generated a structure of full-length, tetrameric AbrB using nuclear magnetic resonance, chemical crosslinking, and mass spectrometry. We note that AbrB possesses a strip of positive electrostatic potential encompassing its DNA-binding region and that its C-terminal domain aids in DNA binding.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1016/j.str.2014.08.018

Publication Info

Olson, Andrew L, Ashley T Tucker, Benjamin G Bobay, Erik J Soderblom, M Arthur Moseley, Richele J Thompson and John Cavanagh (2014). Structure and DNA-binding traits of the transition state regulator AbrB. Structure (London, England : 1993), 22(11). pp. 1650–1656. 10.1016/j.str.2014.08.018 Retrieved from https://hdl.handle.net/10161/28903.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Bobay

Benjamin Bobay

Assistant Professor in Radiology

I am the Assistant Director of the Duke University NMR Center and an Assistant Professor in the Duke Radiology Department. I was originally trained as a structural biochemist with an emphasis on utilizing NMR and continue to use this technique daily helping collaborators characterize protein structures and small molecules through a diverse set of NMR experiments. Through the structural characterization of various proteins, from both planta and eukaryotes, I have developed a robust protocol of utilizing computational biology for describing binding events, mutations, post-translations modifications (PTMs), and/or general behavior within in silico solution scenarios. I have utilized these techniques in collaborations ranging from plant pathologists at the Swammerdam Institute for Life Sciences department at the University of Amsterdam to biomedical engineers at North Carolina State University to professors in the Pediatrics department at Duke University. These studies have centered around the structural and functional consequences of PTMs (such as phosphorylation), mutation events, truncation of multi-domain proteins, dimer pulling experiments, to screening of large databases of ligands for potential binding events. Through this combination of NMR and computational biology I have amassed 50 peer-reviewed published articles and countless roles on scientific projects, as well as the development of several tutorials concerning the creation of ligand databases and high-throughput screening of large databases utilizing several different molecular dynamic and computational docking programs.

Soderblom

Erik James Soderblom

Associate Research Professor of Cell Biology

Director, Proteomics and Metabolomics Core Facility

Moseley

Martin Arthur Moseley

Adjunct Professor in the Department of Cell Biology

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.