A micro-scale inspired chemo-mechanical model of bonded geomaterials
Date
2015-12-01
Authors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
© 2015 Elsevier Ltd.Chemical processes influence the mechanical properties of geomaterials, resulting in either strengthening or weakening effects, the latter being particularly critical for long-term safety assessment in civil and energy engineering. Coupling of chemical and mechanical processes in cemented soils and rocks is investigated starting form a micro-structural chemo-mechanical model. The model consists of an assembly of grains and bonds undergoing dissolution or precipitation of mineral mass, affecting geometrical characteristics of the assembly. The principal such characteristics are the evolution of specific surface area and of bond cross-sectional area at the micro-scale, and of porosity at the macro-scale, which become key variables linking the micro-scale and macro-scale mechanisms. This framework has the advantage of avoiding unphysical situations, such as the occurrence of mineral precipitation with no pore space available or the occurrence of dissolution with no cementing material left. The evolution of important micromechanical quantities, such as the number of active bonds and their cross section is tracked. At the macro-scale, a reactive chemo-plasticity model is combined with a model for bonded geomaterials. The resulting micro- to macro-scale transition, schematically applicable to both materials with reactive grains and bonds and materials with only reacting bonds, is validated against the available experimental evidence, concerning calcarenite with both reactive bonds and grains made of the same mineral. The model is thus shown to provide a flexible framework for a consistent interpretation of experimental loading paths, and can be readily extended to more complex circumstances.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Gajo, A, F Cecinato and T Hueckel (2015). A micro-scale inspired chemo-mechanical model of bonded geomaterials. International Journal of Rock Mechanics and Mining Sciences, 80. pp. 425–438. 10.1016/j.ijrmms.2015.10.001 Retrieved from https://hdl.handle.net/10161/11502.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke

Tomasz Hueckel
Tomasz Hueckel received his master's degree in civil engineering from the University of Technology in Gdansk, Poland, in 1968, his Ph.D. in applied mechanics from the Polish Academy of Sciences in Warsaw, in 1974, and the D.Sc. in physical sciences from the University of Grenoble, France, in 1985. He started his research career at the Polish Academy of Sciences in Warsaw, then taught at the University of Rome and the University of Technology in Milan before joining ISMES, a research institute in Bergamo, Italy, where he was responsible for research on geomechanical aspects of nuclear waste disposal in clays, a subject in which he continues to be strongly involved. He came to Duke in 1987.
Dr. Hueckel's research interest is in theoretical soil mechanics, rock mechanics, and environmental geomechanics, as well as in theory of plasticity. His current projects deal with thermo-plasticity and chemo-plasticity of clays, and in general in mechanics of materials composed of chemically reacting solids and liquids. He is interested in fundamental aspects of soil drying and cracking, and processes of soil aging and healing. The above subjects involve mathematical modeling and model driven laboratory experiments. He also is interested in basic aspects of theory of plasticity, such as stability and localization. His research is applied to hydraulic geo-barriers affected either by chemically hazardous liquids or nuclear waste heat, to prediction of petroleum production induced compaction and subsidence, as well as desiccation damage.
Dr. Hueckel is a co-founder and co-Editor-in Chief (2015) of Geomechanics for Energy and the Environment, an Elsevier journal. He has published also in International Journal of Solids and Structures, International Journal of Engineering Science, Pure and Applied Geophysics, Surveys in Geophysics, Engineering Geology, Engineering Fracture Mechanics, International Journal of Rock Mechanics and Mining Engineering, International Journal of Numerical and Analytical Methods in Geomechanics, Computers and Geotechnics, International Journal of Soils and Foundations, Journal de Mecanique, Canadian Geotechnical Journal, Meccanica, Ingenieur- Archiv, and the ASCE Journal of Geotechnical Engineering. He has also contributed to numerous books on the state of the art. Dr. Hueckel is heavily involved in international research cooperation, collaborating and co-authoring with Belgian, Italian, French, Polish, Spanish and Swiss researchers. He is or was a member of the editorial board of the Journal of Numerical and Analytical Methods in Geomechanics, the Archive of Applied Mechanics and of the International Journal of Mechanics of Cohesive and Frictional Materials, ASCE Journals of Geotechnical and Geoenvironmental Engineering and ASCE International Journal of Geomechanics, Italian Geotechnical Journal and Studia Geotechnica et Mechanica (Polish).
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.