Impact of selection of cord blood units from the United States and swiss registries on the cost of banking operations.

Abstract

Background

Over the last 2 decades, cord blood (CB) has become an important source of blood stem cells. Clinical experience has shown that CB is a viable source for blood stem cells in the field of unrelated hematopoietic blood stem cell transplantation.

Methods

Studies of CB units (CBUs) stored and ordered from the US (National Marrow Donor Program (NMDP) and Swiss (Swiss Blood Stem Cells (SBSQ)) CB registries were conducted to assess whether these CBUs met the needs of transplantation patients, as evidenced by units being selected for transplantation. These data were compared to international banking and selection data (Bone Marrow Donors Worldwide (BMDW), World Marrow Donor Association (WMDA)). Further analysis was conducted on whether current CB banking practices were economically viable given the units being selected from the registries for transplant. It should be mentioned that our analysis focused on usage, deliberately omitting any information about clinical outcomes of CB transplantation.

Results

A disproportionate number of units with high total nucleated cell (TNC) counts are selected, compared to the distribution of units by TNC available. Therefore, the decision to use a low threshold for banking purposes cannot be supported by economic analysis and may limit the economic viability of future public CB banking.

Conclusions

We suggest significantly raising the TNC level used to determine a bankable unit. A level of 125 × 10(7) TNCs, maybe even 150 × 10(7) TNCs, might be a viable banking threshold. This would improve the return on inventory investments while meeting transplantation needs based on current selection criteria.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1159/000345690

Publication Info

Bart, Thomas, Michael Boo, Snejana Balabanova, Yvonne Fischer, Grazia Nicoloso, Lydia Foeken, Machteld Oudshoorn, Jakob Passweg, et al. (2013). Impact of selection of cord blood units from the United States and swiss registries on the cost of banking operations. Transfusion medicine and hemotherapy : offizielles Organ der Deutschen Gesellschaft fur Transfusionsmedizin und Immunhamatologie, 40(1). pp. 14–20. 10.1159/000345690 Retrieved from https://hdl.handle.net/10161/24682.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Kurtzberg

Joanne Kurtzberg

Jerome S. Harris Distinguished Professor of Pediatrics

Dr. Kurtzberg is an internationally renowned expert in pediatric hematology/oncology, pediatric blood and marrow transplantation, umbilical cord blood banking and transplantation, and novel applications of cord blood and birthing tissues in the emerging fields of cellular therapies and regenerative medicine.   Dr. Kurtzberg serves as the Director of the Marcus Center for Cellular Cures (MC3), Director of the Pediatric Transplant and Cellular Therapy Program, Director of the Carolinas Cord Blood Bank, and Co-Director of the Stem Cell Transplant Laboratory at Duke University.  The Carolinas Cord Blood Bank is an FDA licensed public cord blood bank distributing unrelated cord blood units for donors for hematopoietic stem cell transplantation (HSCT) through the CW Bill Young Cell Transplantation Program.  The Robertson GMP Cell Manufacturing Laboratory supports manufacturing of RETHYMIC (BLA, Enzyvant, 2021), allogeneic cord tissue derived and bone marrow derived mesenchymal stromal cells (MSCs), and DUOC, a microglial/macrophage cell derived from cord blood.

Dr. Kurtzberg’s research in MC3 focuses on translational studies from bench to bedside, seeking to develop transformative clinical therapies using cells, tissues, molecules, genes, and biomaterials to treat diseases and injuries that currently lack effective treatments. Recent areas of investigation in MC3 include clinical trials investigating the safety and efficacy of autologous and allogeneic cord blood in children with neonatal brain injury – hypoxic ischemic encephalopathy (HIE), cerebral palsy (CP), and autism. Clinical trials testing allogeneic cord blood are also being conducted in adults with acute ischemic stroke. Clinical trials optimizing manufacturing and testing the safety and efficacy of cord tissue MSCs in children with autism, CP and HIE and adults with COVID-lung disease are underway. DUOC, given intrathecally, is under study in children with leukodystrophies and adults with primary progressive multiple sclerosis.

In the past, Dr. Kurtzberg has developed novel chemotherapeutic drugs for acute leukemias, assays enumerating ALDH bright cells to predict cord blood unit potency, methods of cord blood expansion, potency assays for targeted cell and tissue based therapies. Dr. Kurtzberg currently holds several INDs for investigational clinical trials from the FDA.  She has also trained numerous medical students, residents, clinical and post-doctoral fellows over the course of her career.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.