Frontoparietal activation during visual conjunction search: Effects of bottom-up guidance and adult age.


We conducted functional magnetic resonance imaging (fMRI) with a visual search paradigm to test the hypothesis that aging is associated with increased frontoparietal involvement in both target detection and bottom-up attentional guidance (featural salience). Participants were 68 healthy adults, distributed continuously across 19 to 78 years of age. Frontoparietal regions of interest (ROIs) were defined from resting-state scans obtained prior to task-related fMRI. The search target was defined by a conjunction of color and orientation. Each display contained one item that was larger than the others (i.e., a size singleton) but was not informative regarding target identity. Analyses of search reaction time (RT) indicated that bottom-up attentional guidance from the size singleton (when coincident with the target) was relatively constant as a function of age. Frontoparietal fMRI activation related to target detection was constant as a function of age, as was the reduction in activation associated with salient targets. However, for individuals 35 years of age and older, engagement of the left frontal eye field (FEF) in bottom-up guidance was more prominent than for younger individuals. Further, the age-related differences in left FEF activation were a consequence of decreasing resting-state functional connectivity in visual sensory regions. These findings indicate that age-related compensatory effects may be expressed in the relation between activation and behavior, rather than in the magnitude of activation, and that relevant changes in the activation-RT relation may begin at a relatively early point in adulthood. Hum Brain Mapp 38:2128-2149, 2017. © 2017 Wiley Periodicals, Inc.





Published Version (Please cite this version)


Publication Info

Madden, David J, Emily L Parks, Catherine W Tallman, Maria A Boylan, David A Hoagey, Sally B Cocjin, Micah A Johnson, Ying-Hui Chou, et al. (2017). Frontoparietal activation during visual conjunction search: Effects of bottom-up guidance and adult age. Hum Brain Mapp, 38(4). pp. 2128–2149. 10.1002/hbm.23509 Retrieved from

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



David Joseph Madden

Professor in Psychiatry and Behavioral Sciences

My research focuses primarily on the cognitive neuroscience of aging: the investigation of age-related changes in perception, attention, and memory, using both behavioral measures and neuroimaging techniques, including positron emission tomography (PET), functional magnetic resonance imaging (fMRI), and diffusion tensor imaging (DTI).

The behavioral measures have focused on reaction time, with the goal of distinguishing age-related changes in specific cognitive abilities from more general effects arising from a slowing in elementary perceptual processes. The cognitive abilities of interest include selective attention as measured in visual search tasks, semantic and episodic memory retrieval, and executive control processes.

The behavioral measures are necessary to define the cognitive abilities of interest, and the neuroimaging techniques help define the functional neuroanatomy of those abilities. The PET and fMRI measures provide information regarding neural activity during cognitive performance. DTI is a recently developed technique that images the structural integrity of white matter. The white matter tracts of the brain provide critical pathways linking the gray matter regions, and thus this work will complement the studies using PET and fMRI that focus on gray matter activation.

A current focus of the research program is the functional connectivity among regions, not only during cognitive task performance but also during rest. These latter measures, referred to as intrinsic functional connectivity, are beginning to show promise as an index of overall brain functional efficiency, which can be assessed without the implementation of a specific cognitive task. From DTI, information can be obtained regarding how anatomical connectivity constrains intrinsic functional connectivity. It will be important to determine the relative influence of white matter pathway integrity, intrinsic functional connectivity, and task-related functional connectivity, as mediators of age-related differences in behavioral measures of cognitive performance.

Ultimately, the research program can help link age-related changes in cognitive performance to changes in the structure and function of specific neural systems. The results also have implications for clinical translation, in terms of the identification of neural biomarkers for the diagnosis of neural pathology and targeting rehabilitation procedures.


Emily L Parks

Lecturing Fellow of Thompson Writing Program

Guy Glenn Potter

Associate Professor in Psychiatry and Behavioral Sciences

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.