Distinct contributions of eroding and depositional profiles to land-atmosphere CO <inf>2</inf> exchange in two contrasting forests

dc.contributor.author

Billings, SA

dc.contributor.author

Richter, DDB

dc.contributor.author

Ziegler, SE

dc.contributor.author

Prestegaard, K

dc.contributor.author

Wade, AM

dc.date.accessioned

2020-01-18T22:24:37Z

dc.date.available

2020-01-18T22:24:37Z

dc.date.issued

2019-02-26

dc.date.updated

2020-01-18T22:24:14Z

dc.description.abstract

© 2019 Billings, Richter, Ziegler, Prestegaard and Wade. Lateral movements of soil organic C (SOC) influence Earth's C budgets by transporting organic C across landscapes and by modifying soil-profile fluxes of CO 2 . We extended a previously presented model (Soil Organic C Erosion Replacement and Oxidation, SOrCERO) and present SOrCERODe, a model with which we can project how erosion and subsequent deposition of eroded material can modify biosphere-atmosphere CO 2 fluxes in watersheds. The model permits the user to quantify the degree to which eroding and depositional profiles experience a change in SOC oxidation and production as formerly deep horizons become increasingly shallow, and as depositional profiles are buried. To investigate the relative importance of erosion rate, evolving SOC depth distributions, and mineralization reactivity on modeled soil C fluxes, we examine two forests exhibiting distinct depth distributions of SOC content and reactivity, hydrologic regimes and land use. Model projections suggest that, at decadal to centennial timescales: (1) the quantity of SOC moving across a landscape depends on erosion rate and the degree to which SOC production and oxidation at the eroding profile are modified as deeper horizons become shallower, and determines the degree to which depositional profile SOC fluxes are modified; (2) erosional setting C sink strength increases with erosion rate, with some sink effects reaching more than 40% of original profile SOC content after 100 y of a relatively high erosion rate (i.e., 1 mm y −1 ); (3) even large amounts of deposited SOC may not promote a large depositional profile C sink even with large gains in autochthonous SOC post-deposition if oxidation of buried SOC is not limited; and (4) when modeled depositional settings receive a disproportionately large amount of SOC, simulations of strong C sink scenarios mimic observations of modest preservation of buried SOC and large SOC gains in surficial horizons, suggesting that C sink scenarios have merit in these forests. Our analyses illuminate the importance of cross-landscape linkages between upland and depositional environments for watershed-scale biosphere-atmosphere C fluxes, and emphasize the need for accurate representations and observations of time-varying depth distributions of SOC reactivity across evolving watersheds if we seek accurate projections of ecosystem C balances.

dc.identifier.issn

2296-6463

dc.identifier.issn

2296-6463

dc.identifier.uri

https://hdl.handle.net/10161/19772

dc.language

English

dc.publisher

Frontiers Media SA

dc.relation.ispartof

Frontiers in Earth Science

dc.relation.isversionof

10.3389/feart.2019.00036

dc.subject

Science & Technology

dc.subject

Physical Sciences

dc.subject

Geosciences, Multidisciplinary

dc.subject

Geology

dc.subject

erosion

dc.subject

deposition

dc.subject

hillslope

dc.subject

floodplain soils

dc.subject

carbon fluxes

dc.subject

soil organic carbon

dc.subject

dynamic replacement

dc.subject

terrestrial carbon sink

dc.subject

SOIL ORGANIC-CARBON

dc.subject

DIOXIDE EVOLUTION

dc.subject

EROSION

dc.subject

IMPACT

dc.subject

SEDIMENT

dc.subject

MATTER

dc.subject

STABILIZATION

dc.subject

DYNAMICS

dc.subject

LEGACY

dc.subject

PRODUCTIVITY

dc.title

Distinct contributions of eroding and depositional profiles to land-atmosphere CO 2 exchange in two contrasting forests

dc.type

Journal article

duke.contributor.orcid

Wade, AM|0000-0002-1577-3968

pubs.organisational-group

Student

pubs.organisational-group

Duke

pubs.organisational-group

Environmental Sciences and Policy

pubs.organisational-group

Nicholas School of the Environment

pubs.publication-status

Published

pubs.volume

7

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Billings 2019.pdf
Size:
1.96 MB
Format:
Adobe Portable Document Format
Description:
Published version