Chromatin-associated APC regulates gene expression in collaboration with canonical WNT signaling and AP-1.
Date
2018-07-27
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
Mutation of the APC gene occurs in a high percentage of colorectal tumors and is a central event driving tumor initiation in the large intestine. The APC protein performs multiple tumor suppressor functions including negative regulation of the canonical WNT signaling pathway by both cytoplasmic and nuclear mechanisms. Published reports that APC interacts with β-catenin in the chromatin fraction to repress WNT-activated targets have raised the possibility that chromatin-associated APC participates more broadly in mechanisms of transcriptional control. This screening study has used chromatin immunoprecipitation and next-generation sequencing to identify APC-associated genomic regions in colon cancer cell lines. Initial target selection was performed by comparison and statistical analysis of 3,985 genomic regions associated with the APC protein to whole transcriptome sequencing data from APC-deficient and APC-wild-type colon cancer cells, and two types of murine colon adenomas characterized by activated Wnt signaling. 289 transcripts altered in expression following APC loss in human cells were linked to APC-associated genomic regions. High-confidence targets additionally validated in mouse adenomas included 16 increased and 9 decreased in expression following APC loss, indicating that chromatin-associated APC may antagonize canonical WNT signaling at both WNT-activated and WNT-repressed targets. Motif analysis and comparison to ChIP-seq datasets for other transcription factors identified a prevalence of binding sites for the TCF7L2 and AP-1 transcription factors in APC-associated genomic regions. Our results indicate that canonical WNT signaling can collaborate with or antagonize the AP-1 transcription factor to fine-tune the expression of shared target genes in the colorectal epithelium. Future therapeutic strategies for APC-deficient colorectal cancers might be expanded to include agents targeting the AP-1 pathway.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Hankey, William, Zhong Chen, Maxwell J Bergman, Max O Fernandez, Baris Hancioglu, Xun Lan, Anil G Jegga, Jie Zhang, et al. (2018). Chromatin-associated APC regulates gene expression in collaboration with canonical WNT signaling and AP-1. Oncotarget, 9(58). pp. 31214–31230. 10.18632/oncotarget.25781 Retrieved from https://hdl.handle.net/10161/20051.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke

Qianben Wang
Dr. Wang's laboratory is primarily focused on understanding the transcriptional and epigenetic mechanisms that drive the progression of hormone-dependent cancers. Additionally, they investigate the role of host proteases in coronavirus infection. Their recent studies aim to combine CRISPR/Cas13 technologies with nanotechnology to target undruggable transcription factors in cancers and host proteases for controlling infections caused by SARS-CoV-2 and related coronaviruses.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.