Importance sampling for the infinite sites model.

Loading...
Thumbnail Image

Date

2008-01

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

10
views
16
downloads

Citation Stats

Abstract

Importance sampling or Markov Chain Monte Carlo sampling is required for state-of-the-art statistical analysis of population genetics data. The applicability of these sampling-based inference techniques depends crucially on the proposal distribution. In this paper, we discuss importance sampling for the infinite sites model. The infinite sites assumption is attractive because it constraints the number of possible genealogies, thereby allowing for the analysis of larger data sets. We recall the Griffiths-Tavaré and Stephens-Donnelly proposals and emphasize the relation between the latter proposal and exact sampling from the infinite alleles model. We also introduce a new proposal that takes knowledge of the ancestral state into account. The new proposal is derived from a new result on exact sampling from a single site. The methods are illustrated on simulated data sets and the data considered in Griffiths and Tavaré (1994).

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.2202/1544-6115.1400

Publication Info

Hobolth, Asger, Marcy K Uyenoyama and Carsten Wiuf (2008). Importance sampling for the infinite sites model. Statistical applications in genetics and molecular biology, 7(1). p. Article32. 10.2202/1544-6115.1400 Retrieved from https://hdl.handle.net/10161/25953.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Uyenoyama

Marcy K. Uyenoyama

Professor of Biology

Marcy Uyenoyama studies mechanisms of evolutionary change at the molecular and population levels. Among the questions under study include the prediction and detection of the effects of natural selection on genomic structure. A major area of research addresses the development of maximum-likelihood and Bayesian methods for inferring evolutionary processes from the pattern of molecular variation. Evolutionary processes currently under study include characterization of population structure across genomes.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.