Sequential Multiple Assignment Randomized Trial (SMART) to identify optimal sequences of telemedicine interventions for improving initiation of insulin therapy: A simulation study.

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats


Citation Stats



To examine the value of a Sequential Multiple Assignment Randomized Trial (SMART) design compared to a conventional randomized control trial (RCT) for telemedicine strategies to support titration of insulin therapy for Type 2 Diabetes Mellitus (T2DM) patients new to insulin.


Microsimulation models were created in R using a synthetic sample based on primary data from 63 subjects enrolled in a pilot study of a smartphone application (App), Diabetes Pal compared to a nurse-based telemedicine strategy (Nurse). For comparability, the SMART and an RCT design were constructed to allow comparison of four (embedded) adaptive interventions (AIs).


In the base case scenario, the SMART has similar overall mean expected HbA1c and cost per subject compared with RCT, for sample size of n = 100 over 10,000 simulations. SMART has lower (better) standard deviations of the mean expected HbA1c per AI, and higher efficiency of choosing the correct AI across various sample sizes. The differences between SMART and RCT become apparent as sample size decreases. For both trial designs, the threshold value at which a subject was deemed to have been responsive at an intermediate point in the trial had an optimal choice (i.e., the sensitivity curve had a U-shape). SMART design dominates the RCT, in the overall mean HbA1c (lower value) when the threshold value is close to optimal.


SMART is suited to evaluating the efficacy of different sequences of treatment options, in addition to the advantage of providing information on optimal treatment sequences.





Published Version (Please cite this version)


Publication Info

Yan, Xiaoxi, David B Matchar, Nirmali Sivapragasam, John P Ansah, Aastha Goel and Bibhas Chakraborty (2021). Sequential Multiple Assignment Randomized Trial (SMART) to identify optimal sequences of telemedicine interventions for improving initiation of insulin therapy: A simulation study. BMC medical research methodology, 21(1). p. 200. 10.1186/s12874-021-01395-7 Retrieved from

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



David Bruce Matchar

Professor of Medicine

My research relates to clinical practice improvement - from the development of clinical policies to their implementation in real world clinical settings. Most recently my major content focus has been cerebrovascular disease. Other major clinical areas in which I work include the range of disabling neurological conditions, cardiovascular disease, and cancer prevention.
Notable features of my work are: (1) reliance on analytic strategies such as meta-analysis, simulation, decision analysis and cost-effectiveness analysis; (2) a balancing of methodological rigor the needs of medical professionals; and (3) dependence on interdisciplinary groups of experts.
This approach is best illustrated by the Stroke Prevention Patient Outcome Research Team (PORT), for which I served as principal investigator. Funded by the AHCPR, the PORT involved 35 investigators at 13 institutions. The Stroke PORT has been highly productive and has led to a stroke prevention project funded as a public/private partnership by the AHCPR and DuPont Pharma, the Managing Anticoagulation Services Trial (MAST). MAST is a practice improvement trial in 6 managed care organizations, focussing on optimizing anticoagulation for individuals with atrial fibrillation.
I serve as consultant in the general area of analytic strategies for clinical policy development, as well as for specific projects related to stroke (e.g., acute stroke treatment, management of atrial fibrillation, and use of carotid endarterectomy.) I have worked with AHCPR (now AHRQ), ACP, AHA, AAN, Robert Wood Johnson Foundation, NSA, WHO, and several pharmaceutical companies.
Key Words: clinical policy, disease management, stroke, decision analysis, clinical guidelines

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.