A blood-based biomarker panel to risk-stratify mild traumatic brain injury.

Loading...
Thumbnail Image

Date

2017-01

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

79
views
46
downloads

Citation Stats

Abstract

Mild traumatic brain injury (TBI) accounts for the vast majority of the nearly two million brain injuries suffered in the United States each year. Mild TBI is commonly classified as complicated (radiographic evidence of intracranial injury) or uncomplicated (radiographically negative). Such a distinction is important because it helps to determine the need for further neuroimaging, potential admission, or neurosurgical intervention. Unfortunately, imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI) are costly and not without some risk. The purpose of this study was to screen 87 serum biomarkers to identify a select panel of biomarkers that would predict the presence of intracranial injury as determined by initial brain CT. Serum was collected from 110 patients who sustained a mild TBI within 24 hours of blood draw. Two models were created. In the broad inclusive model, 72kDa type IV collagenase (MMP-2), C-reactive protein (CRP), creatine kinase B type (CKBB), fatty acid binding protein-heart (hFABP), granulocyte-macrophage colony-stimulating factor (GM-CSF) and malondialdehyde modified low density lipoprotein (MDA-LDL) significantly predicted injury visualized on CT, yielding an overall c-statistic of 0.975 and a negative predictive value (NPV) of 98.6. In the parsimonious model, MMP-2, CRP, and CKBB type significantly predicted injury visualized on CT, yielding an overall c-statistic of 0.964 and a negative predictive value (NPV) of 97.2. These results suggest that a serum based biomarker panel can accurately differentiate patients with complicated mild TBI from those with uncomplicated mild TBI. Such a panel could be useful to guide early triage decisions, including the need for further evaluation or admission, especially in those environments in which resources are limited.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1371/journal.pone.0173798

Publication Info

Sharma, Richa, Alexandra Rosenberg, Ellen R Bennett, Daniel T Laskowitz and Shawn K Acheson (2017). A blood-based biomarker panel to risk-stratify mild traumatic brain injury. PloS one, 12(3). p. e0173798. 10.1371/journal.pone.0173798 Retrieved from https://hdl.handle.net/10161/22424.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Bennett

Ellen Ruth Bennett

Adjunct Assistant Professor in the Department of Neurology
Laskowitz

Daniel Todd Laskowitz

Professor of Neurology

Our laboratory uses molecular biology, cell culture, and animal modeling techniques to examine the CNS response to acute injury. In particular, our laboratory examines the role of microglial activation and the endogenous CNS inflammatory response in exacerbating secondary injury following acute brain insult. Much of the in vitro work in this laboratory is dedicated to elucidating cellular responses to injury with the ultimate goal of exploring new therapeutic interventions in the clinical setting of stroke, intracranial hemorrhage, and closed head injury.

In conjunction with the Multidisciplinary Neuroprotection Laboratories, we also focus on clinically relevant small animal models of acute CNS injury. For example, we have recently characterized murine models of closed head injury, subarachnoid hemorrhage, intracranial hemorrhage and perinatal hypoxia-ischemia, in addition to the standard rodent models of focal stroke and transient forebrain ischemia. Recently we have adapted several of these models from the rat to the mouse to take advantage of murine transgenic technology. The objective of these studies are two-fold: to gain better insight into the cellular responses and pathophysiology of acute brain injury, and to test novel therapeutic strategies for clinical translation. In both cell culture systems and animal models, our primary focus is on examining the role of oxidative stress and inflammatory mechanism in mediating brain injury following acute brain insult, and examining the neuroprotective effects of endogenous apolipoprotein E in the injured mammalian central nervous system.

Our laboratory is committed to translational research, and has several active clinical research protocols, which are designed to bring the research performed in the Multidisciplinary Research Laboratories to the clinical arena. These protocols are centered around patients following stroke and acute brain injury, and are primarily based out of the Emergency Room and Neurocritical Care Unit. For example, we are currently examining the role of inflammatory mediators for use as a point-of-care diagnostic marker following stroke, intracranial hemorrhage, and closed head injury. We have recently translated a novel apoE mimetic from the preclinical setting to a multi center Phase 2 trial evaluating efficacy in intracranial hemorrhage. We are also examining the functional role of different polymorphisms of of inflammatory cytokines in the setting of acute brain injury and neurological dysfunction following cardiopulmonary bypass.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.