Metalloporphyrins as therapeutic catalytic oxidoreductants in central nervous system disorders.

Abstract

Significance

Metalloporphyrins, characterized by a redox-active transitional metal (Mn or Fe) coordinated to a cyclic porphyrin core ligand, mitigate oxidative/nitrosative stress in biological systems. Side-chain substitutions tune redox properties of metalloporphyrins to act as potent superoxide dismutase mimics, peroxynitrite decomposition catalysts, and redox regulators of transcription factor function. With oxidative/nitrosative stress central to pathogenesis of CNS injury, metalloporphyrins offer unique pharmacologic activity to improve the course of disease.

Recent advances

Metalloporphyrins are efficacious in models of amyotrophic lateral sclerosis, Alzheimer's disease, epilepsy, neuropathic pain, opioid tolerance, Parkinson's disease, spinal cord injury, and stroke and have proved to be useful tools in defining roles of superoxide, nitric oxide, and peroxynitrite in disease progression. The most substantive recent advance has been the synthesis of lipophilic metalloporphyrins offering improved blood-brain barrier penetration to allow intravenous, subcutaneous, or oral treatment.

Critical issues

Insufficient preclinical data have accumulated to enable clinical development of metalloporphyrins for any single indication. An improved definition of mechanisms of action will facilitate preclinical modeling to define and validate optimal dosing strategies to enable appropriate clinical trial design. Due to previous failures of "antioxidants" in clinical trials, with most having markedly less biologic activity and bioavailability than current-generation metalloporphyrins, a stigma against antioxidants has discouraged the development of metalloporphyrins as CNS therapeutics, despite the consistent definition of efficacy in a wide array of CNS disorders.

Future directions

Further definition of the metalloporphyrin mechanism of action, side-by-side comparison with "failed" antioxidants, and intense effort to optimize therapeutic dosing strategies are required to inform and encourage clinical trial design.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1089/ars.2013.5413

Publication Info

Sheng, Huaxin, Raphael E Chaparro, Toshihiro Sasaki, Miwa Izutsu, Robert D Pearlstein, Artak Tovmasyan and David S Warner (2014). Metalloporphyrins as therapeutic catalytic oxidoreductants in central nervous system disorders. Antioxidants & redox signaling, 20(15). pp. 2437–2464. 10.1089/ars.2013.5413 Retrieved from https://hdl.handle.net/10161/23274.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Sheng

Huaxin Sheng

Associate Professor in Anesthesiology

We have successfully developed various rodent models of brain and spinal cord injuries in our lab, such as focal cerebral ischemia, global cerebral ischemia, head trauma, subarachnoid hemorrhage, intracerebral hemorrhage, spinal cord ischemia and compression injury. We also established cardiac arrest and hemorrhagic shock models for studying multiple organ dysfunction.  Our current studies focus on two projects. One is to examine the efficacy of catalytic antioxidant in treating cerebral ischemia and the other is to examine the efficacy of post-conditioning on outcome of subarachnoid hemorrhage induced cognitive dysfunction.

Eduardo Chaparro

Research Scholar

Dr. Chaparro received his Medical Doctoral degree from Javeriana University in Bogota - Colombia and his Ph.D. in Medical Sciences with a focus on Physiology, Pharmacology, and Neuroscience from the University of South Florida in Tampa - Florida. He joined the Anesthesiology Department at USF for his graduate work to study the effects of anesthetics and anti-apoptotic compounds in brain ischemia. After completing his Ph.D., he came to Duke University for his post-doctoral training at the Multidisciplinary Neuroprotection Laboratory where he dedicated his time to testing drugs and devices in different animal models of neurological conditions getting special recognition for successfully testing the first hepatocyte growth factor mimetic in an animal model of transient cerebral ischemia. He also successfully tested a vestibular stimulator approved by the FDA for human use. After completing his post-doctoral training, Dr. Chaparro joined the Cerebrovascular and Skull Base Division at the Duke University Department of Neurosurgery where he has dedicated his career to testing treatments for neurovascular conditions including stroke, moyamoya disease, aneurysms, intra-cerebral hemorrhages, intravascular stent thrombogenicity, traumatic brain injury, and epilepsy. Dr. Chaparro is also an entrepreneur, and his interest in hypothermia as a treatment for neuronal inflammation, let him patent a brain-cooling device that has been successfully tested in non-human primates. He assembles a team of engineers, neuroscientists, and business experts to create Neurocool, a startup to develop the prototype further. As a CEO he is working on getting FDA approval and developing a human-compatible device aiming to help patients with central nervous system inflammatory conditions.

Robert D. Pearlstein

Assistant Professor Emeritus in Neurosurgery

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.