Genetic determinants of childhood and adult height associated with osteosarcoma risk.
Date
2018-09
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
BACKGROUND:Although increased height has been associated with osteosarcoma risk in previous epidemiologic studies, to the authors' knowledge the relative contribution of stature during different developmental timepoints remains unclear. Furthermore, the question of how genetic determinants of height impact osteosarcoma etiology remains unexplored. Genetic variants associated with stature in previous genome-wide association studies may be biomarkers of osteosarcoma risk. METHODS:The authors tested the associations between osteosarcoma risk and polygenic scores for adult height (416 variants), childhood height (6 variants), and birth length (5 variants) in 864 osteosarcoma cases and 1879 controls of European ancestry. RESULTS:Each standard deviation increase in the polygenic score for adult height, corresponding to a 1.7-cm increase in stature, was found to be associated with a 1.10-fold increase in the risk of osteosarcoma (95% confidence interval [95% CI], 1.01-1.19; P =.027). Each standard deviation increase in the polygenic score for childhood height, corresponding to a 0.5-cm increase in stature, was associated with a 1.10-fold increase in the risk of osteosarcoma (95% CI, 1.01-1.20; P =.023). The polygenic score for birth length was not found to be associated with osteosarcoma risk (P =.11). When adult and childhood height scores were modeled together, they were found to be independently associated with osteosarcoma risk (P =.037 and P = .043, respectively). An expression quantitative trait locus for cartilage intermediate layer protein 2 (CILP2), rs8103992, was significantly associated with osteosarcoma risk after adjustment for multiple comparisons (odds ratio, 1.35; 95% CI, 1.16-1.56 [P = 7.93×10-5 and Padjusted =.034]). CONCLUSIONS:A genetic propensity for taller adult and childhood height attainments contributed independently to osteosarcoma risk in the current study data. These results suggest that the biological pathways affecting normal bone growth may be involved in osteosarcoma etiology.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Zhang, Chenan, Libby M Morimoto, Adam J de Smith, Helen M Hansen, Julio Gonzalez-Maya, Alyson A Endicott, Ivan V Smirnov, Catherine Metayer, et al. (2018). Genetic determinants of childhood and adult height associated with osteosarcoma risk. Cancer, 124(18). pp. 3742–3752. 10.1002/cncr.31645 Retrieved from https://hdl.handle.net/10161/18514.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke

Qingyi Wei
Qingyi Wei, MD, PhD, Professor in the Department of Medicine, is Associate Director for Cancer Control and Population Sciences, Co-leader of CCPS and Co-leader of Epidemiology and Population Genomics (Focus Area 1). He is a professor of Medicine and an internationally recognized epidemiologist focused on the molecular and genetic epidemiology of head and neck cancers, lung cancer, and melanoma. His research focuses on biomarkers and genetic determinants for the DNA repair deficient phenotype and variations in cell death. He is Editor-in-Chief of the open access journal "Cancer Medicine" and Associate Editor-in-Chief of the International Journal of Molecular Epidemiology and Genetics.
Area of Expertise: Epidemiology

William Curtis Eward
I am an Orthopaedic Oncologist, with dual clinical degrees (MD and DVM). I treat complex sarcomas in people and animals. My laboratory studies comparative oncology - discoveries we can make about cancer by analyses across different species.

Kyle Walsh
Dr. Walsh is Associate Professor of Neurosurgery and Pathology, Director of the Division of Neuro-epidemiology, and a Senior Fellow in the Duke Center for the Study of Aging and Human Development. He leads Duke’s Neuro-epidemiology Lab, which integrates bench science with statistical methods to study the neurobiology of glial senescence and gliomagenesis. This research interrogates human genomic and epigenomic profiles to identify both heritable and modifiable factors that contribute to neurologic and physical decline, applying these approaches to studying the shared neurobiology of cognition, glial senescence, and gliomagenesis. The lab has a long history studying telomere maintenance in pre-malignant cells and its role in the development of cancer, most notably glioblastoma.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.