Alterations in acylcarnitines, amines, and lipids inform about the mechanism of action of citalopram/escitalopram in major depression.

Abstract

Selective serotonin reuptake inhibitors (SSRIs) are the first-line treatment for major depressive disorder (MDD), yet their mechanisms of action are not fully understood and their therapeutic benefit varies among individuals. We used a targeted metabolomics approach utilizing a panel of 180 metabolites to gain insights into mechanisms of action and response to citalopram/escitalopram. Plasma samples from 136 participants with MDD enrolled into the Mayo Pharmacogenomics Research Network Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS) were profiled at baseline and after 8 weeks of treatment. After treatment, we saw increased levels of short-chain acylcarnitines and decreased levels of medium-chain and long-chain acylcarnitines, suggesting an SSRI effect on β-oxidation and mitochondrial function. Amines-including arginine, proline, and methionine sulfoxide-were upregulated while serotonin and sarcosine were downregulated, suggesting an SSRI effect on urea cycle, one-carbon metabolism, and serotonin uptake. Eighteen lipids within the phosphatidylcholine (PC aa and ae) classes were upregulated. Changes in several lipid and amine levels correlated with changes in 17-item Hamilton Rating Scale for Depression scores (HRSD17). Differences in metabolic profiles at baseline and post-treatment were noted between participants who remitted (HRSD17 ≤ 7) and those who gained no meaningful benefits (<30% reduction in HRSD17). Remitters exhibited (a) higher baseline levels of C3, C5, alpha-aminoadipic acid, sarcosine, and serotonin; and (b) higher week-8 levels of PC aa C34:1, PC aa C34:2, PC aa C36:2, and PC aa C36:4. These findings suggest that mitochondrial energetics-including acylcarnitine metabolism, transport, and its link to β-oxidation-and lipid membrane remodeling may play roles in SSRI treatment response.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1038/s41398-020-01097-6

Publication Info

MahmoudianDehkordi, Siamak, Ahmed T Ahmed, Sudeepa Bhattacharyya, Xianlin Han, Rebecca A Baillie, Matthias Arnold, Michelle K Skime, Lisa St John-Williams, et al. (2021). Alterations in acylcarnitines, amines, and lipids inform about the mechanism of action of citalopram/escitalopram in major depression. Translational psychiatry, 11(1). p. 153. 10.1038/s41398-020-01097-6 Retrieved from https://hdl.handle.net/10161/25485.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Arnold

Matthias Arnold

Adjunct Associate Professor in the Department of Psychiatry and Behavioral Sciences
Thompson

J. Will Thompson

Adjunct Assistant Professor in the Department of Pharmacology & Cancer Biology

Dr. Thompson's research focuses on the development and deployment of proteomics and metabolomics mass spectrometry techniques for the analysis of biological systems. He served as the Assistant Director of the Proteomics and Metabolomics Shared Resource in the Duke School of Medicine from 2007-2021. He currently maintains collaborations in metabolomics and proteomics research at Duke, and develops new tools for chemical analysis as a Principal Scientist at 908 Devices in Carrboro, NC.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.