Dynamics and fluctuations of minimally structured glass formers.
Date
2024-05
Authors
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
The mean-field theory (MFT) of simple structural glasses, which is exact in the limit of infinite spatial dimensions, d→∞, offers theoretical insight as well as quantitative predictions about certain features of d=3 systems. In order to more systematically relate the behavior of physical systems to MFT, however, various finite-d effects need to be accounted for. Although some efforts along this direction have already been undertaken, theoretical and technical challenges hinder progress. A general approach to sidestep many of these difficulties consists of simulating minimally structured models whose behavior smoothly converges to that described by the MFT as d increases, so as to permit a controlled dimensional extrapolation. Using this approach, we here extract the small fluctuations around the dynamical MFT captured by a standard liquid-state observable, the non-Gaussian parameter α_{2}. The results provide insight into the physical origin of these fluctuations as well as a quantitative reference with which to compare observations for more realistic glass formers.
Type
Department
Description
Provenance
Subjects
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Charbonneau, Patrick, Yi Hu and Peter K Morse (2024). Dynamics and fluctuations of minimally structured glass formers. Physical review. E, 109(5-1). p. 054905. 10.1103/physreve.109.054905 Retrieved from https://hdl.handle.net/10161/32195.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke

Patrick Charbonneau
Professor Charbonneau studies soft matter. His work combines theory and simulation to understand the glass problem, protein crystallization, microphase formation, and colloidal assembly in external fields.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.