Browsing by Author "Kraus, Virginia Byers"
Results Per Page
Sort Options
Item Open Access A U-shaped Association Between Blood Pressure and Cognitive Impairment in Chinese Elderly.(Journal of the American Medical Directors Association, 2017-02) Lv, Yue-Bin; Zhu, Peng-Fei; Yin, Zhao-Xue; Kraus, Virginia Byers; Threapleton, Diane; Chei, Choy-Lye; Brasher, Melanie Sereny; Zhang, Juan; Qian, Han-Zhu; Mao, Chen; Matchar, David Bruce; Luo, Jie-Si; Zeng, Yi; Shi, Xiao-MingObjectives
Higher or lower blood pressure may relate to cognitive impairment, whereas the relationship between blood pressure and cognitive impairment among the elderly is not well-studied. The study objective was to determine whether blood pressure is associated with cognitive impairment in the elderly, and, if so, to accurately describe the association.Design
Cross-sectional data from the sixth wave of the Chinese Longitudinal Healthy Longevity Survey (CLHLS) conducted in 2011.Setting
Community-based setting in longevity areas in China.Participants
A total of 7144 Chinese elderly aged 65 years and older were included in the sample.Measures
Systolic blood pressures (SBP) and diastolic blood pressures (DBP) were measured, pulse pressure (PP) was calculated as (SBP) - (DBP) and mean arterial pressures (MAP) was calculated as 1/3(SBP) + 2/3(DBP). Cognitive function was assessed via a validated Mini-Mental State Examination (MMSE).Results
Based on the results of generalized additive models (GAMs), U-shaped associations were identified between cognitive impairment and SBP, DBP, PP, and MAP. The cutpoints at which risk for cognitive impairment (MMSE <24) was minimized were determined by quadratic models as 141 mm Hg, 85 mm Hg, 62 mm Hg, and 103 mm Hg, respectively. In the logistic models, U-shaped associations remained for SBP, DBP, and MAP but not PP. Below the identified cutpoints, each 1-mm Hg decrease in blood pressure corresponded to 0.7%, 1.1%, and 1.1% greater risk in the risk of cognitive impairment, respectively. Above the cutpoints, each 1-mm Hg increase in blood pressure corresponded to 1.2%, 1.8%, and 2.1% greater risk of cognitive impairment for SBP, DBP, and MAP, respectively.Conclusion
A U-shaped association between blood pressure and cognitive function in an elderly Chinese population was found. Recognition of these instances is important in identifying the high-risk population for cognitive impairment and to individualize blood pressure management for cognitive impairment prevention.Item Open Access Amino acid racemization reveals differential protein turnover in osteoarthritic articular and meniscal cartilages.(Arthritis Res Ther, 2009) Stabler, Thomas V; Byers, Samuel S; Zura, Robert D; Kraus, Virginia ByersINTRODUCTION: Certain amino acids within proteins have been reported to change from the L form to the D form over time. This process is known as racemization and is most likely to occur in long-lived low-turnover tissues such as normal cartilage. We hypothesized that diseased tissue, as found in an osteoarthritic (OA) joint, would have increased turnover reflected by a decrease in the racemized amino acid content. METHODS: Using high-performance liquid chromatography methods, we quantified the L and D forms of amino acids reported to racemize in vivo on a biological timescale: alanine, aspartate (Asp), asparagine (Asn), glutamate, glutamine, isoleucine, leucine (Leu), and serine (Ser). Furthermore, using a metabolically inactive control material (tooth dentin) and a control material with normal metabolism (normal articular cartilage), we developed an age adjustment in order to make inferences about the state of protein turnover in cartilage and meniscus. RESULTS: In the metabolically inactive control material (n = 25, ages 13 to 80 years) and the normal metabolizing control material (n = 19, ages 17 to 83 years), only Asp + Asn (Asx), Ser, and Leu showed a significant change (increase) in racemization with age (P < 0.01). The age-adjusted proportions of racemized to total amino acid (D/D+L expressed as a percentage of the control material) for Asx, Ser, and Leu when compared with the normal articular cartilage control were 97%, 74%, and 73% in OA meniscal cartilage and 97%, 70%, and 78% in OA articular cartilage. We also observed lower amino acid content in OA articular and meniscal cartilages compared with normal articular cartilage as well as a loss of total amino acids with age in the OA meniscal but not the OA articular cartilage. CONCLUSIONS: These data demonstrate comparable anabolic responses for non-lesioned OA articular cartilage and OA meniscal cartilage but an excess of catabolism over anabolism for the meniscal cartilage.Item Open Access Associations between superoxide dismutase, malondialdehyde and all-cause mortality in older adults: a community-based cohort study.(BMC geriatrics, 2019-04-15) Mao, Chen; Yuan, Jin-Qiu; Lv, Yue-Bin; Gao, Xiang; Yin, Zhao-Xue; Kraus, Virginia Byers; Luo, Jie-Si; Chei, Choy-Lye; Matchar, David Bruce; Zeng, Yi; Shi, Xiao-MingBackground
Oxidative stress is an important theory of aging but population-based evidence has been lacking. This study aimed to evaluate the associations between biomarkers of oxidative stress, including plasma superoxide dismutase (SOD) activity and malondialdehyde (MDA), with all-cause mortality in older adults.Methods
This is a community-based cohort study of 2224 participants (women:1227, median age: 86 years). We included individuals aged 65 or above and with plasma SOD activity and/or MDA tests at baseline. We evaluated the hazard ratios (HRs) and 95% confidence intervals (CIs) by multivariable Cox models.Results
We documented 858 deaths during six years of follow-up. There was a significant interaction effect of sex with the association between SOD activity and mortality (P < 0.001). Compared with the lowest quintile, the risk of all-cause mortality was inversely associated with increasing quintiles of plasma SOD activity in women(P-trend< 0.001), with adjusted HRs for the second through fifth quintiles of 0.73 (95% CI 0.53-1.02), 0.52(95% CI 0.38-0.72), 0.53(95% CI 0.39-0.73), and 0.48(95% CI 0.35-0.66). There were no significant associations between SOD activity and mortality in men (P-trend = 0.64), and between MDA and mortality in all participants (P-trend = 0.79).Conclusions
Increased activity of SOD was independently associated with lower all-cause mortality in older women but not in men. This epidemiological study lent support for the free radical/oxidative stress theory of aging.Item Metadata only Biomarkers and proteomic analysis of osteoarthritis.(Matrix Biol, 2014-10) Hsueh, Ming-Feng; Önnerfjord, Patrik; Kraus, Virginia ByersOur friend and colleague, Dr. Dick Heinegård, contributed greatly to the understanding of joint tissue biochemistry, the discovery and validation of arthritis-related biomarkers and the establishment of methodology for proteomic studies in osteoarthritis (OA). To date, discovery of OA-related biomarkers has focused on cartilage, synovial fluid and serum. Methods, such as affinity depletion and hyaluronidase treatment have facilitated proteomics discovery research from these sources. Osteoarthritis usually involves multiple joints; this characteristic makes it easier to detect OA with a systemic biomarker but makes it hard to delineate abnormalities of individual affected joints. Although the abundance of cartilage proteins in urine may generally be lower than other tissue/sample sources, the protein composition of urine is much less complex and its collection is non-invasive thereby facilitating the development of patient friendly biomarkers. To date however, relatively few proteomics studies have been conducted in OA urine. Proteomics strategies have identified many proteins that may relate to pathological mechanisms of OA. Further targeted approaches to validate the role of these proteins in OA are needed. Herein we summarize recent proteomic studies related to joint tissues and the cohorts used; a clear understanding of the cohorts is important for this work as we expect that the decisive discoveries of OA-related biomarkers rely on comprehensive phenotyping of healthy non-OA and OA subjects. Besides the common phenotyping criteria that include, gender, age, and body mass index (BMI), it is essential to collect data on symptoms and signs of OA outside the index joints and to bolster this with objective imaging data whenever possible to gain the most precise appreciation of the total burden of disease. Proteomic studies on systemic biospecimens, such as serum and urine, rely on comprehensive phenotyping data to unravel the true meaning of the proteomic results.Item Open Access Chondroitin Sulfate Inhibits Monocyte Chemoattractant Protein-1 Release From 3T3-L1 Adipocytes: A New Treatment Opportunity for Obesity-Related Inflammation?(Biomarker insights, 2017-01) Stabler, Thomas V; Montell, Eulàlia; Vergés, Josep; Huebner, Janet L; Kraus, Virginia ByersMonocyte chemoattractant protein-1 (MCP-1) overproduction from inflamed adipose tissue is a major contributor to obesity-related metabolic syndromes. 3T3-L1 embryonic fibroblasts were cultured and differentiated into adipocytes using an established protocol. Adipocytes were treated with lipopolysaccharide (LPS) to induce inflammation and thus MCP-1 release. At the same time, varying concentrations of chondroitin sulfate (CS) were added in a physiologically relevant range (10-200 µg/mL) to determine its impact on MCP-1 release. Chondroitin sulfate, a natural glycosaminoglycan of connective tissue including the cartilage extracellular matrix, was chosen on the basis of our previous studies demonstrating its anti-inflammatory effect on macrophages. Because the main action of MCP-1 is to induce monocyte migration, cultured THP-1 monocytes were used to test whether CS at the highest physiologically relevant concentration could inhibit cell migration induced by human recombinant MCP-1. Chondroitin sulfate (100-200 µg/mL) inhibited MCP-1 release from inflamed adipocytes in a dose-dependent manner (P < .01, 95% confidence interval [CI]: -5.89 to -3.858 at 100 µg/mL and P < .001, 95% CI: -6.028 to -3.996 at 200 µg/mL) but had no effect on MCP-1-driven chemotaxis of THP-1 monocytes. In summary, CS could be expected to reduce macrophage infiltration into adipose tissue by reduction in adipocyte expression and release of MCP-1 and as such might reduce adipose tissue inflammation in response to pro-inflammatory stimuli such as LPS, now increasingly recognized to be relevant in vivo.Item Open Access Critical appraisal of four IL-6 immunoassays.(PLoS One, 2012) Thompson, Dana K; Huffman, Kim M; Kraus, William E; Kraus, Virginia ByersBACKGROUND: Interleukin-6 (IL-6) contributes to numerous inflammatory, metabolic, and physiologic pathways of disease. We evaluated four IL-6 immunoassays in order to identify a reliable assay for studies of metabolic and physical function. Serial plasma samples from intravenous glucose tolerance tests (IVGTTs), with expected rises in IL-6 concentrations, were used to test the face validity of the various assays. METHODS AND FINDINGS: IVGTTs, administered to 14 subjects, were performed with a single infusion of glucose (0.3 g/kg body mass) at time zero, a single infusion of insulin (0.025 U/kg body mass) at 20 minutes, and frequent blood collection from time zero to 180 minutes for subsequent Il-6 measurement. The performance metrics of four IL-6 detection methods were compared: Meso Scale Discovery immunoassay (MSD), an Invitrogen Luminex bead-based multiplex panel (LX), an Invitrogen Ultrasensitive Luminex bead-based singleplex assay (ULX), and R&D High Sensitivity ELISA (R&D). IL-6 concentrations measured with MSD, R&D and ULX correlated with each other (Pearson Correlation Coefficients r = 0.47-0.94, p<0.0001) but only ULX correlated (r = 0.31, p = 0.0027) with Invitrogen Luminex. MSD, R&D, and ULX, but not LX, detected increases in IL-6 in response to glucose. All plasma samples were measurable by MSD, while 35%, 1%, and 4.3% of samples were out of range when measured by LX, ULX, and R&D, respectively. Based on representative data from the MSD assay, baseline plasma IL-6 (0.90 ± 0.48 pg/mL) increased significantly as expected by 90 minutes (1.29 ± 0.59 pg/mL, p = 0.049), and continued rising through 3 hours (4.25 ± 3.67 pg/mL, p = 0.0048). CONCLUSION: This study established the face validity of IL-6 measurement by MSD, R&D, and ULX but not LX, and the superiority of MSD with respect to dynamic range. Plasma IL-6 concentrations increase in response to glucose and insulin, consistent with both an early glucose-dependent response (detectable at 1-2 hours) and a late insulin-dependent response (detectable after 2 hours).Item Unknown Developing a Senomorphic Treatment Strategy in Osteoarthritis(2022) Chen, Yu-HsiuOsteoarthritis (OA) is the most common form of arthritis in the population worldwide, resulting in significant disabilities. Currently, no treatments can prevent or reverse the development of OA. Cellular senescence has been identified as a major contributing factor to OA. Therefore, a therapy targeting senescence could be an effective treatment for OA. Several strategies have been proposed to target senescence in OA, including neutralizing agents for the senescence-associated phenotypes (SASPs), senolytics for eliminating senescent cells, and senomorphics for modifying the senescence phenotype. In fact, a senolytic, UBX0101, showed a protective effect for post-traumatic OA (PTOA) development in mouse models by reducing both OA histological grading and OA related pain. However, it failed to meet the primary endpoint of relieving symptoms in a clinical phase 2 trial. The failure of the human trial may be related to a high placebo response rate from the control group or, more likely, the heterogeneous phenotypes involved in human OA disease differ from the PTOA in the mouse model. The lack of available senescent-specific biomarkers, which could be used to refine the phenotype of the subject enrollment or to monitor the occurrence of senescence presents a challenge to evaluate a trial successfully. Alternatively, senolytics may be detrimental in tissue with a higher proportion of senescent cells. After treatment, the remaining cells may not be able to maintain the integrity of the cartilage. Therefore, in the present study, we investigated the association of cellular senescence with OA disease severity, identified a biomarker dipeptidyl peptidase-4 (DPP4) for chondrocyte senescence and OA progression, and proposed a senomorphic treatment using chromobox 4 (CBX4) for modulating cell function of the replicative senescent model WI-38 cells and human osteoarthritic chondrocytes.First, we investigated the association of OA disease severity in human knee joints with the percentage of cells expressing senescence-associated β-galactosidase activity (SA-β-gal) and p16. We assessed three regions within the tibial plateau of the knee corresponding to a gradient of disease severities in tissue procured from human medial-dominant OA. We found that SA-β-gal and p16 were positively correlated with OA severity. Our result suggested cellular senescence could be involved in OA progression, and targeting senescence could be a promising treatment for OA. Subsequently, we identified Dipeptidyl-peptidase 4 (DPP4, also known as CD26) as a potential biomarker for OA senescence. We isolated chondrocytes from knee OA cartilage and determined the association of DPP4 expression with senescence markers, SA-β-gal and p16, by flow-cytometry. We also compared the expression of anabolic and catabolic genes, senescence-related genes, and senescence-associated secretory phenotypes (SASPs) in DPP4+ and DPP4- cells, isolated by two different methods: fluorescence-activated cell sorting and magnetic-activated cell sorting. Additionally, we quantified soluble DPP4 in synovial fluid (SF) and assessed its association with radiographic knee OA. DPP4 expression was associated with higher SA-β-gal, p16 expression, senescence-related gene and catabolic gene expression, SASPs secretion, and lower anabolic gene expression in chondrocytes. In addition, SF DPP4 was significantly associated with radiographic knee OA progression (β=4.657 p=0.015). Next, we identified the senomorphic effect of CBX4 in WI-38 cells. We first observed the decrease of CBX4 protein expression and increased senescence markers and gene expression during WI-38 serial culture. We next evaluated the presence of senescence markers and expression of senescence-related genes in the CBX4 activation and CBX4 knockdown compared to controls in pre-senescent WI-38. Compared to the control group, knockdown of CBX4 increased cellular senescence, whereas activation of CBX4 decreased senescence in the pre-senescent WI-38 cells. Based on these results, we identified that CBX4 regulates replicative senescence in WI-38 cells and functions as a senomorphic and potential anti-senescence target. Additionally, we explored the mechanisms of senescence regulation from CBX4 domains by using CBX4 mutated lentiviral particles and compared them with CBX4 wildtype in WI-38 cells. CDM, SIMs, and C-box domains are all involved in the regulation of senescence by CBX4; where CDM is mainly involved in cell cycle regulation, SIMs are involved in the cell proliferation, DNA damage repair, and SASPs secretion, and C-box is related to cell proliferation and SASPs secretion. Taken together, CBX4 is a multi-functional protein, and these mutants elucidated the different non-overlapping functions in senescence regulation. Finally, we identified the CBX4 senomorphic effect in osteoarthritic chondrocytes by comparing CBX4 wildtype and control transduced cells. Compared to control, CBX4 overexpressed chondrocytes demonstrated lower DPP4 expression and higher proliferation marker EdU. Overall, our study demonstrated that cellular senescence is positively correlated with OA disease severity, identified DPP4 as a potential biomarker for cellular senescence in OA, and explored CBX4 as a potential senomorphic treatment in human WI-38 fibroblasts and OA chondrocytes.
Item Unknown Elucidating the Molecular Architecture of Cartilage by Proteomics(2015) Hsueh, MingFengArticular cartilage is a highly specialized avascular tissue and consists of chondrocytes and two major components, a collagen-rich framework and highly abundant proteoglycans. The chondrocyte morphology and extracellular matrix properties vary with the depth of cartilage. Some past studies have defined the zonal distribution of a broad range of cartilage proteins in different layers. Based on the variations within each layer, the extracellular matrix can be further distinguished to pericellular, territorial and interterritorial regions. However, most of these studies used guanidine-HCl extraction that leaves an unextracted residual with a substantial amount of collagen. The high abundance of anionic polysaccharide molecules from cartilage adversely affects the chromatographic separation. Scatter oriented chondrocytes only account for the small proportion of the whole tissue protein extraction. However, the density of the cell varies with depth of cartilage as well. Moreover, the physiological status may also altered the extracellular matrix properties. Therefore, a comprehensive strategy to solve all these difficulties are necessary to elucidate the molecular structure of cartilage.
In this study, we used quantitative and qualitative proteomic analysis to investigate various cartilage tissue processing protocols. We established a method for removing chondrocytes from cartilage sections that minimized matrix protein loss. Quantitative and qualitative proteomic analyses were used to evaluate different cartilage extraction methodologies. The addition of surfactant to guanidine-HCl extraction buffer improved protein solubility. Ultrafiltration removed interference from polysaccharides and salts. The different extraction methods yielded different protein profiles. For instance, an overwhelming number of collagen peptides were extracted by the in situ trypsin digestion method. However, as expected, proteoglycans were more abundant within the guanidine-HCl extraction.
Subsequently we applied these methods to extract cartilage sections from different cartilage layers (superficial, intermediate and deep), joint types (knee and hip), and disease states (healthy and osteoarthritic). We also utilized lase capture microscopy (LCM) to harvest cartilage sample from individual subregions (territorial and interterritorial regions). The results suggested that there is more unique proteins existed in the superficial layer. By removing the chondrocytes, we were able to identify more extracellular matrix proteins. The phenotyping of cartilage subregions provided the chance to precisely localize the protein distribution, such as clusterin protein. We observed that the guanidine-HCl extractability (guanidine-HCl/ guanidine-HCl + in situ digestion extracts) of cartilage proteins. Proteoglycans showed high extractability while collagen and non-collagenous proteins had lower extractability. We also observed that the extractability might differ with depth of cartilage and also disease states might alter the characters as well.
Laser capture microscopy provides us the access to the cartilage subregions in which only few studies have investigated because of the difficulties to separate them. We established the proteomic analysis compatible-protocol to prepare the cartilage section for LCM application. The results showed that most of the proteoglycans and other proteins were enriched in the interterritorial regions. Type III and VI collagens, and fibrillin-1 were enriched in the territorial regions. We demonstrated that this distribution difference also varied with depth of cartilage. The difference of protein abundance between subregions might be altered because of disease states.
Last we were looking for the post-transliational modification existed in these subregions of cartilage. Deamidation is one of the modification without the enzyme involved. Previous studies have showed that deamidation may accumulated in the tissue with low turnover rate. Our proteomic analysis results suggests that abundance of deamidated peptides also varied in different layers and subregions of cartilage.
We have developed the monoclonal antibody based immunoassay to quantify the deamidated cartilage oligomeric matrix protein within cartilage tissue from different joints (hip and knee) and disease states (healthy, para-lesion, and remote lesion). The results suggests that the highest concentration of deamidated COMP was identified in arthritic hip cartilage.
The results of this study generated several reliable protocols to perform cartilage matrix proteomic analysis and provided data on the cartilage matrix proteome, without confounding by intracellular proteins and an overwhelming abundance of collagens. The discovery results elucidated the molecular architecture of cartilage tissue at different joint sites and disease states. The similarities among these cartilages suggested a constitutive role of some proteins such as collagen, prolargin, biglycan and decorin. Differences in abundance or distribution patterns, for other proteins such as for cartilage oligomaric matrix protein, aggrecan and hyaluronan and proteoglycan link protein, point to intriguing biological difference by joint site and disease state. Decellularization and a combination of extraction methodologies provides a holistic approach in characterizing the cartilage extracellular matrix. Guanidine-HCl extractability is an important marker to characterize the statue of cartilage; however it has not been fully understand. The protein distributions in matrix subregions may also serve as an index to characterize the metabolic status of cartilage in different disease states. A large sample cohort will be necessary to elucidate these characters.
Item Unknown Elucidating the Molecular Composition of Cartilage by Proteomics.(J Proteome Res, 2016-02-05) Hsueh, Ming-Feng; Khabut, Areej; Kjellström, Sven; Önnerfjord, Patrik; Kraus, Virginia ByersArticular cartilage consists of chondrocytes and two major components, a collagen-rich framework and highly abundant proteoglycans. Most prior studies defining the zonal distribution of cartilage have extracted proteins with guanidine-HCl. However, an unextracted collagen-rich residual is left after extraction. In addition, the high abundance of anionic polysaccharide molecules extracted from cartilage adversely affects the chromatographic separation. In this study, we established a method for removing chondrocytes from cartilage sections with minimal extracellular matrix protein loss. The addition of surfactant to guanidine-HCl extraction buffer improved protein solubility. Ultrafiltration removed interference from polysaccharides and salts. Almost four-times more collagen peptides were extracted by the in situ trypsin digestion method. However, as expected, proteoglycans were more abundant within the guanidine-HCl extraction. These different methods were used to extract cartilage sections from different cartilage layers (superficial, intermediate, and deep), joint types (knee and hip), and disease states (healthy and osteoarthritic), and the extractions were evaluated by quantitative and qualitative proteomic analyses. The results of this study led to the identifications of the potential biomarkers of osteoarthritis (OA), OA progression, and the joint specific biomarkers.Item Unknown Exercise-induced changes in metabolic intermediates, hormones, and inflammatory markers associated with improvements in insulin sensitivity.(Diabetes Care, 2011-01) Huffman, Kim M; Slentz, Cris A; Bateman, Lori A; Thompson, Dana; Muehlbauer, Michael J; Bain, James R; Stevens, Robert D; Wenner, Brett R; Kraus, Virginia Byers; Newgard, Christopher B; Kraus, William EOBJECTIVE: To understand relationships between exercise training-mediated improvements in insulin sensitivity (S(I)) and changes in circulating concentrations of metabolic intermediates, hormones, and inflammatory mediators. RESEARCH DESIGN AND METHODS: Targeted mass spectrometry and enzyme-linked immunosorbent assays were used to quantify metabolic intermediates, hormones, and inflammatory markers at baseline, after 6 months of exercise training, and 2 weeks after exercise training cessation (n = 53). A principal components analysis (PCA) strategy was used to relate changes in these intermediates to changes in S(I). RESULTS: PCA reduced the number of intermediates from 90 to 24 factors composed of biologically related components. With exercise training, improvements in S(I) were associated with reductions in by-products of fatty acid oxidation and increases in glycine and proline (P < 0.05, R² = 0.59); these relationships were retained 15 days after cessation of exercise training (P < 0.05, R² = 0.34). CONCLUSIONS: These observations support prior observations in animal models that exercise training promotes more efficient mitochondrial β-oxidation and challenges current hypotheses regarding exercise training and glycine metabolism.Item Unknown Genetics and Biomarkers of Osteoarthritis and Joint Hypermobility(2009) Chen, Hsiang-ChengOsteoarthritis (OA) is the most common joint disorder causing chronic disability in the world population. By the year 2030, an estimated one fifth of this population will be affected by OA. Although OA is regarded as a multi-factorial disorder with both environmental and genetic components, the exact pathogenesis remains unknown.
In this study, we hypothesize that biomarkers associated with OA can be used as quantitative traits of OA, and provide enough power to identify new genes or replicate known gene associations for OA. We established an extensive family called the CARRIAGE (CARolinas Region Interaction of Aging, Genes and Environment) family. Then, we measured and analyzed seven OA-related biomarkers (HA, COMP, PIIANP, CPII, C2C, hs-CRP and GSP) in this extensive family to evaluate their association with OA clinical phenotypes. These findings suggest that OA biomarkers can reflect hand OA in this large multigenerational family. Therefore, we performed nonparametric variance components analysis to evaluate heritability for quantitative traits for those biomarkers. Finally, based upon OA biomarkers with high heritability, we performed a genome-wide linkage scan. Our results provide the first evidence of genetic susceptibility loci identified by OA-related biomarkers, indicating several genetic loci potentially contributing to the genetic diversity of OA.
Meanwhile, we identified joint hypermobility as a factor which reduces OA risk and has an inverse association with serum COMP levels in this family. The relationship between lower serum COMP and OA have been further validated in another Caucasian GOGO (Genetics of Generalized Osteoarthritis) population. Therefore, we further hypothesize that joint hypermobility, having the characteristic of a decreased OA risk, can serve as a quantitative trait for identifying protective loci for OA. Then, we performed nonparametric variance components analysis to evaluate the heritability of joint hypermobility. The result also shows joint hypermobility has substantial heritable components in this family. Lastly, based on the same genome-wide linkage scan, we identify genetic susceptibility loci for joint hypermobility.
In conclusion, our work provides the first linkage study to identify genetic loci associated with OA using biological markers. Furthermore, we have also shown genetic susceptibility loci for joint hypermobility, possibly implying protective loci for OA.
Item Unknown Genome-wide expression profiles of subchondral bone in osteoarthritis.(Arthritis Res Ther, 2013) Chou, Ching-Heng; Wu, Chia-Chun; Song, I-Wen; Chuang, Hui-Ping; Lu, Liang-Suei; Chang, Jen-Huei; Kuo, San-Yuan; Lee, Chian-Her; Wu, Jer-Yuarn; Chen, Yuan-Tsong; Kraus, Virginia Byers; Lee, Ming Ta MichaelINTRODUCTION: The aim of this study was to evaluate, for the first time, the differences in gene expression profiles of normal and osteoarthritic (OA) subchondral bone in human subjects. METHODS: Following histological assessment of the integrity of overlying cartilage and the severity of bone abnormality by micro-computed tomography, we isolated total RNA from regions of interest from human OA (n = 20) and non-OA (n = 5) knee lateral tibial (LT) and medial tibial (MT) plateaus. A whole-genome profiling study was performed on an Agilent microarray platform and analyzed using Agilent GeneSpring GX11.5. Confirmatory quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis was performed on samples from 9 OA individuals to confirm differential expression of 85 genes identified by microarray. Ingenuity Pathway Analysis (IPA) was used to investigate canonical pathways and immunohistochemical staining was performed to validate protein expression levels in samples. RESULTS: A total of 972 differentially expressed genes were identified (fold change ≥ ± 2, P ≤0.05) between LT (minimal degeneration) and MT (significant degeneration) regions from OA samples; these data implicated 279 canonical pathways in IPA. The qRT-PCR data strongly confirmed the accuracy of microarray results (R2 = 0.58, P <0.0001). Novel pathways were identified in this study including Periostin (POSTN) and Leptin (LEP), which are implicated in bone remodeling by osteoblasts. CONCLUSIONS: To the best of our knowledge, this study represents the most comprehensive direct assessment to date of gene expression profiling in OA subchondral bone. This study provides insights that could contribute to the development of new biomarkers and therapeutic strategies for OA.Item Open Access Investigation of Chondroprotective Mechanisms of Selenium(2010) Cheng, Wai MingSelenium (Se) is an essential trace element and metalloid involved in several key metabolic activities: protection against oxidative damage, regulation of immune and thyroid function, and fertility. Several recent lines of evidence from epidemiology, genetic, and transgenic animal studies suggest that Se may play a protective role in Osteoarthritis (OA). However, the exact protective mechanism of Se is still unclear.
In this study, we hypothesized that Se exerts its chondroprotective benefit via an anti-oxidative and anti-inflammatory effect mediated by specific selenoproteins that neutralize cytokine-induced inflammatory responses in chondrocytes. We established an in vitro system for studying the effect of Se in the chondrosarcoma cell line SW-1353 and in human primary chondrocytes. Selenomethionine (SeMet) induced gene expression and enzyme activity of both antioxidative enzymes glutathione peroxidase (GPX) and thioredoxin reductase (TR) in SW-1353 cells. Our data suggest that Se may be protective against oxidative stress through regulation of the activity of these antioxidative enzymes.
As IL-1β is one of the primary pro-inflammatory cytokines contributing to the progression in OA, we next investigated the effect of Se on the gene expression induced by physiological doses of IL-1β. SeMet inhibited IL-1β induced catabolic gene expression of matrix metalloproteinase 1 (MMP1) and MMP13 as well as total MMP activity in chondrocytes. Similarly, SeMet inhibited chondrocyte gene expression of IL-1β induced nitric oxide synthase (iNOS) and cyclooxygenase (COX2) with corresponding reductions in nitric oxide (NO) and prostaglandin E2 (PGE2) production. In addition, SeMet pretreatment attenuated the IL-1β induced activation of p38 MAPK but not the ERK, JNK or NFkB pathways. Taken together, our results suggest that Se inhibits IL-1β induced expression of inflammatory and catabolic genes, partly through inhibition of IL-1β cell signaling.
Since Se may function through selenoproteins, we evaluated the role of three specific major selenoproteins, GPX1, TR1 and DIO2, in modifying the inflammatory response stimulated by IL-1β in chondrocytes by RNA interference. Based on RNA interference results, DIO2 and TR1 mediated the inhibitory effect of SeMet on IL-1β induced COX2 gene expression, while GPX1 did not show a significant inhibitory effect on Se. Depletion of DIO2 increased the IL-1β induced COX2 gene expression. This suggests that DIO2 may negatively modulate the IL-1β response. Our data also suggest that part of this inhibitory effect of DIO2 could be through regulation of IL-1β gene expression itself. These results highlight a potential new role of DIO2 in modulating the inflammatory response in chondrocytes
In summary, the result of this study suggests that Se may exert its chondroprotective effect through specific selenoproteins which neutralize oxidative stress and modify the inflammatory response in chondrocytes.
Item Open Access Low-density lipoprotein cholesterol was inversely associated with 3-year all-cause mortality among Chinese oldest old: data from the Chinese Longitudinal Healthy Longevity Survey.(Atherosclerosis, 2015-03) Lv, Yue-Bin; Yin, Zhao-Xue; Chei, Choy-Lye; Qian, Han-Zhu; Kraus, Virginia Byers; Zhang, Juan; Brasher, Melanie Sereny; Shi, Xiao-Ming; Matchar, David Bruce; Zeng, YiObjective
Low-density lipoprotein cholesterol (LDL-C) is a risk factor for survival in middle-aged individuals, but conflicting evidence exists on the relationship between LDL-C and all-cause mortality among the elderly. The goal of this study was to assess the relationship between LDL-C and all-cause mortality among Chinese oldest old (aged 80 and older) in a prospective cohort study.Methods
LDL-C concentration was measured at baseline and all-cause mortality was calculated over a 3-year period. Multiple statistical models were used to adjust for demographic and biological covariates.Results
During three years of follow-up, 447 of 935 participants died, and the overall all-cause mortality was 49.8%. Each 1 mmol/L increase of LDL-C concentration corresponded to a 19% decrease in 3-year all-cause mortality (hazard ratio [HR] 0.81, 95% confidence interval [CI] 0.71-0.92). The crude HR for abnormally higher LDL-C concentration (≥3.37 mmol/L) was 0.65 (0.41-1.03); and the adjusted HR was statistically significant around 0.60 (0.37-0.95) when adjusted for different sets of confounding factors. Results of sensitivity analysis also showed a significant association between higher LDL-C and lower mortality risk.Conclusions
Among the Chinese oldest old, higher LDL-C level was associated with lower risk of all-cause mortality. Our findings suggested the necessity of re-evaluating the optimal level of LDL-C among the oldest old.Item Open Access Monosodium urate crystal induced macrophage inflammation is attenuated by chondroitin sulphate: pre-clinical model for gout prophylaxis?(BMC musculoskeletal disorders, 2014-09-27) Orlowsky, Eric W; Stabler, Thomas V; Montell, Eulàlia; Vergés, Josep; Kraus, Virginia ByersChondroitin Sulphate (CS), a natural glycosaminoglycan of the extracellular matrix, has clinical benefit in symptomatic osteoarthritis but has never been tested in gout. In vitro, CS has anti-inflammatory and positive effects on osteoarthritic chondrocytes, synoviocytes and subchondral bone osteoblasts, but its effect on macrophages is unknown. The purpose of our study was to evaluate the in vitro effects of CS on monosodium urate (MSU)-stimulated cytokine production by macrophages.THP-1 monocytes were differentiated into mature macrophages using a phorbol ester, pretreated for 4 hours with CS in a physiologically achievable range of concentrations (10-200 μg/ml) followed by MSU crystal stimulation for 24 hours. Cell culture media were analyzed by immunoassay for factors known to be upregulated during gouty inflammation including IL-1β, IL-8 and TNFα. The specificity of inflammasome activation by MSU crystals was tested with a caspase-1 inhibitor (0.01 μM-10 μM).MSU crystals ≥10 mg/dl increased macrophage production of IL-1β, IL-8 and TNFα a mean 7-, 3- and 4-fold respectively. Induction of IL-1β by MSU was fully inhibited by a caspase-1 inhibitor confirming inflammasome activation as the mechanism for generating this cytokine. In a dose-dependent manner, CS significantly inhibited IL-1β (p = 0.003), and TNFα (p = 0.02) production from macrophages in response to MSU. A similar trend was observed for IL-8 but was not statistically significant (p = 0.41).CS attenuated MSU crystal induced macrophage inflammation, suggesting a possible role for CS in gout prophylaxis.Item Open Access MOntelukast as a potential CHondroprotective treatment following Anterior cruciate ligament reconstruction (MOCHA Trial): study protocol for a double-blind, randomized, placebo-controlled clinical trial.(Trials, 2022-01) Jacobs, Cale A; Conley, Caitlin EW; Kraus, Virginia Byers; Lansdown, Drew A; Lau, Brian C; Li, Xiaojuan; Majumdar, Sharmila; Spindler, Kurt P; Lemaster, Nicole G; Stone, Austin VBackground
After anterior cruciate ligament (ACL) reconstruction, patient-reported outcomes are improved 10 years post-surgery; however, cytokine concentrations remain elevated years after surgery with over 80% of those with combined ACL and meniscus injuries having posttraumatic osteoarthritis (PTOA) within 10-15 years. The purpose of this multicenter, randomized, placebo-controlled trial is to assess whether a 6-month course of oral montelukast after ACL reconstruction reduces systemic markers of inflammation and biochemical and imaging biomarkers of cartilage degradation.Methods
We will enroll 30 individuals undergoing primary ACL reconstruction to participate in this IRB-approved multicenter clinical trial. This trial will target those at greatest risk of a more rapid PTOA onset (age range 25-50 with concomitant meniscus injury). Patients will be randomly assigned to a group instructed to take 10 mg of montelukast daily for 6 months following ACL reconstruction or placebo. Patients will be assessed prior to surgery and 1, 6, and 12 months following surgery. To determine if montelukast alters systemic inflammation following surgery, we will compare systemic concentrations of prostaglandin E2, monocyte chemoattractant protein-1, and pro-inflammatory cytokines between groups. We will also compare degradative changes on magnetic resonance imaging (MRI) collected 1 and 12 months following surgery between groups with reductions in early biomarkers of cartilage degradation assessed with urinary biomarkers of type II collagen breakdown and bony remodeling.Discussion
There is a complex interplay between the pro-inflammatory intra-articular environment, underlying bone remodeling, and progressive cartilage degradation. PTOA affects multiple tissues and appears to be more similar to rheumatoid arthritis than osteoarthritis with respect to inflammation. There is currently no treatment to delay or prevent PTOA after ACL injury. Since there is a larger and more persistent inflammatory response after ACL reconstruction than the initial insult of injury, treatment may need to be initiated after surgery, sustained over a period of time, and target multiple mechanisms in order to successfully alter the disease process. This study will assess whether a 6-month postoperative course of oral montelukast affects multiple PTOA mechanisms. Because montelukast administration can be safely sustained for long durations and offers a low-cost treatment option, should it be proven effective in the current trial, these results can be immediately incorporated into clinical practice.Trial registration
ClinicalTrials.gov NCT04572256 . Registered on October 1, 2020.Item Open Access Palmitoyl acyltransferase, Zdhhc13, facilitates bone mass acquisition by regulating postnatal epiphyseal development and endochondral ossification: a mouse model.(PLoS One, 2014) Song, I-Wen; Li, Wei-Ru; Chen, Li-Ying; Shen, Li-Fen; Liu, Kai-Ming; Yen, Jeffrey JY; Chen, Yi-Ju; Chen, Yu-Ju; Kraus, Virginia Byers; Wu, Jer-Yuarn; Lee, MT Michael; Chen, Yuan-TsongZDHHC13 is a member of DHHC-containing palmitoyl acyltransferases (PATs) family of enzymes. It functions by post-translationally adding 16-carbon palmitate to proteins through a thioester linkage. We have previously shown that mice carrying a recessive Zdhhc13 nonsense mutation causing a Zdhcc13 deficiency develop alopecia, amyloidosis and osteoporosis. Our goal was to investigate the pathogenic mechanism of osteoporosis in the context of this mutation in mice. Body size, skeletal structure and trabecular bone were similar in Zdhhc13 WT and mutant mice at birth. Growth retardation and delayed secondary ossification center formation were first observed at day 10 and at 4 weeks of age, disorganization in growth plate structure and osteoporosis became evident in mutant mice. Serial microCT from 4-20 week-olds revealed that Zdhhc13 mutant mice had reduced bone mineral density. Through co-immunoprecipitation and acyl-biotin exchange, MT1-MMP was identified as a direct substrate of ZDHHC13. In cells, reduction of MT1-MMP palmitoylation affected its subcellular distribution and was associated with decreased VEGF and osteocalcin expression in chondrocytes and osteoblasts. In Zdhhc13 mutant mice epiphysis where MT1-MMP was under palmitoylated, VEGF in hypertrophic chondrocytes and osteocalcin at the cartilage-bone interface were reduced based on immunohistochemical analyses. Our results suggest that Zdhhc13 is a novel regulator of postnatal skeletal development and bone mass acquisition. To our knowledge, these are the first data to suggest that ZDHHC13-mediated MT1-MMP palmitoylation is a key modulator of bone homeostasis. These data may provide novel insights into the role of palmitoylation in the pathogenesis of human osteoporosis.Item Open Access Relationships amongst osteoarthritis biomarkers, dynamic knee joint load, and exercise: results from a randomized controlled pilot study.(BMC Musculoskelet Disord, 2013-03-27) Hunt, Michael A; Pollock, Courtney L; Kraus, Virginia Byers; Saxne, Tore; Peters, Sue; Peters, Sue; Huebner, Janet L; Sayre, Eric C; Cibere, JolandaBACKGROUND: Little is known about the relationships of circulating levels of biomarkers of cartilage degradation with biomechanical outcomes relevant to knee osteoarthritis (OA) or biomarker changes following non-pharmacological interventions. The objectives of this exploratory, pilot study were to: 1) examine relationships between biomarkers of articular cartilage degradation and synthesis with measures of knee joint load during walking, and 2) examine changes in these biomarkers following 10 weeks of strengthening exercises. METHODS: Seventeen (8 male, 9 female; 66.1 +/- 11.3 years of age) individuals with radiographically-confirmed medial tibiofemoral OA participated. All participants underwent a baseline testing session where serum and urine samples were collected, followed by a three-dimensional motion analysis. Motion analysis was used to calculate the external knee adduction moment (KAM) peak value and impulse. Following baseline testing, participants were randomized to either 10 weeks of: 1) physiotherapist-supervised lower limb muscle strengthening exercises, or 2) no exercises (control). Identical follow-up testing was conducted 11 weeks after baseline. Biomarkers included: urinary C-telopeptide of type II collagen (uCTX-II) and type II collagen cleavage neoepitope (uC2C), serum cartilage oligomeric matrix protein (sCOMP), serum hyaluronic acid (sHA) and serum C-propeptide of type II procollagen (sCPII). Linear regression analysis was used to examine relationships between measures of the KAM and biomarker concentrations as baseline, as well as between-group differences following the intervention. RESULTS: KAM impulse predicted significant variation in uCTX-II levels at baseline (p = 0.04), though not when controlling for disease severity and walking speed (p = 0.33). KAM impulse explained significant variation in the ratio uCTX-II;sCPII even when controlling for additional variables (p = 0.04). Following the intervention, changes in sCOMP were significantly greater in the exercise group compared to controls (p = 0.04). On average those in the control group experienced a slight increase in sCOMP and uCTX-II, while those in the exercise group experienced a reduction. No other significant findings were observed. CONCLUSIONS: This research provides initial evidence of a potential relationship between uCTX-II and knee joint load measures in patients with medial tibiofemoral knee OA. However, this relationship became non-significant after controlling for disease severity and walking speed, suggesting further research is necessary. It also appears that sCOMP is amenable to change following a strengthening intervention, suggesting a potential beneficial role of exercise on cartilage structure. TRIAL REGISTRATION: Clinicaltrials.gov NCT01241812.Item Open Access Synergistic roles of CBX4 chromo and SIM domains in regulating senescence of primary human osteoarthritic chondrocytes.(Arthritis research & therapy, 2023-10) Chen, Yu-Hsiu; Zhang, Xin; Attarian, David; Kraus, Virginia ByersBackground
Cellular senescence is a critical factor contributing to osteoarthritis (OA). Overexpression of chromobox homolog 4 (CBX4) in a mouse system was demonstrated to alleviate post-traumatic osteoarthritis (PTOA) by reducing cellular senescence. Additionally, replicative cellular senescence of WI-38 fibroblasts can be attenuated by CBX4. However, the mechanisms underlying this senomorphic function of CBX4 are not fully understood. In this study, we aimed to investigate the role of CBX4 in cellular senescence in human primary osteoarthritic chondrocytes and to identify the functional domains of CBX4 necessary for its function in modulating senescence.Methods
Chondrocytes, isolated from 6 individuals undergoing total knee replacement for OA, were transduced with wild-type CBX4, mutant CBX4, and control lentiviral constructs. Senescence-related phenotypic outcomes included the following: multiple flow cytometry-measured markers (p16INK4A, senescence-associated β-galactosidase [SA-β-gal] activity and dipeptidyl peptidase-4 [DPP4], and proliferation marker EdU), multiplex ELISA-measured markers in chondrocyte culture media (senescence-associated secretory phenotypes [SASPs], including IL-1β, IL-6, IL-8, TNF-α, MMP-1, MMP-3, and MMP-9), and PCR array-evaluated senescence-related genes.Results
Compared with control, CBX4 overexpression in OA chondrocytes decreased DPP4 expression and SASP secretion and increased chondrocyte proliferation confirming CBX4 senomorphic effects on primary human chondrocytes. Point mutations of the chromodomain domain (CDM, involved in chromatin modification) alone were sufficient to partially block the senomorphic activity of CBX4 (p16INK4A and DPP4 increased, and EdU decreased) but had minimal effect on SASP secretion. Although having no effect on p16INK4A, DPP4, and EdU, deletion of two small-ubiquitin-like-modifier-interaction motifs (CBX4 ΔSIMs) led to increased SASP secretion (IL-1β, TNF-α, IL-8). The combination CBX4 CDMΔSIMs altered all these measures adversely and to a greater degree than the single domain mutants. Deletion of the C-terminal (CBX4 ΔC-box) involved with transcriptional silencing of polycomb group proteins increased IL-1β slightly but significantly but altered none of the other senescence outcome measures.Conclusions
CBX4 has a senomorphic effect on human osteoarthritic chondrocytes. CDM is critical for CBX4-mediated regulation of senescence. The SIMs are supportive but not indispensable for CBX4 senomorphic function while the C-box is dispensable.Item Open Access The effectiveness of low-level laser therapy for nonspecific chronic low back pain: a systematic review and meta-analysis.(Arthritis Res Ther, 2015-12-15) Huang, ZeYu; Ma, Jun; Chen, Jing; Shen, Bin; Pei, FuXing; Kraus, Virginia ByersBACKGROUND: In recent decades, low-level laser therapy (LLLT) has been widely used to relieve pain caused by different musculoskeletal disorders. Though widely used, its reported therapeutic outcomes are varied and conflicting. Results similarly conflict regarding its usage in patients with nonspecific chronic low back pain (NSCLBP). This study investigated the efficacy of low-level laser therapy (LLLT) for the treatment of NSCLBP by a systematic literature search with meta-analyses on selected studies. METHOD: MEDLINE, EMBASE, ISI Web of Science and Cochrane Library were systematically searched from January 2000 to November 2014. Included studies were randomized controlled trials (RCTs) written in English that compared LLLT with placebo treatment in NSCLBP patients. The efficacy effect size was estimated by the weighted mean difference (WMD). Standard random-effects meta-analysis was used, and inconsistency was evaluated by the I-squared index (I(2)). RESULTS: Of 221 studies, seven RCTs (one triple-blind, four double-blind, one single-blind, one not mentioning blinding, totaling 394 patients) met the criteria for inclusion. Based on five studies, the WMD in visual analog scale (VAS) pain outcome score after treatment was significantly lower in the LLLT group compared with placebo (WMD = -13.57 [95 % CI = -17.42, -9.72], I(2) = 0 %). No significant treatment effect was identified for disability scores or spinal range of motion outcomes. CONCLUSIONS: Our findings indicate that LLLT is an effective method for relieving pain in NSCLBP patients. However, there is still a lack of evidence supporting its effect on function.