Browsing by Subject "Adenoviridae"
Now showing 1 - 14 of 14
Results Per Page
Sort Options
Item Open Access Adenovirus F protein as a delivery vehicle for botulinum B.(BMC Immunol, 2010-07-07) Clapp, Beata; Golden, Sarah; Maddaloni, Massimo; Staats, Herman F; Pascual, David WBACKGROUND: Immunization with recombinant carboxyl-terminal domain of the heavy chain (Hc domain) of botulinum neurotoxin (BoNT) stimulates protective immunity against native BoNT challenge. Most studies developing a botulism vaccine have focused on the whole Hc; however, since the principal protective epitopes are located within beta-trefoil domain (Hcbetatre), we hypothesize that immunization with the Hcbetatre domain is sufficient to confer protective immunity. In addition, enhancing its uptake subsequent to nasal delivery prompted development of an alternative vaccine strategy, and we hypothesize that the addition of targeting moiety adenovirus 2 fiber protein (Ad2F) may enhance such uptake during vaccination. RESULTS: The Hcbetatre serotype B immunogen was genetically fused to Ad2F (Hcbetatre/B-Ad2F), and its immunogenicity was tested in mice. In combination with the mucosal adjuvant, cholera toxin (CT), enhanced mucosal IgA and serum IgG Ab titers were induced by nasal Hcbetatre-Ad2F relative to Hcbetatre alone; however, similar Ab titers were obtained upon intramuscular immunization. These BoNT/B-specific Abs induced by nasal immunization were generally supported in large part by Th2 cells, as opposed to Hcbetatre-immunized mice that showed more mixed Th1 and Th2 cells. Using a mouse neutralization assay, sera from animals immunized with Hcbetatre and Hcbetatre-Ad2F protected mice against 2.0 LD50. CONCLUSION: These results demonstrate that Hcbetatre-based immunogens are highly immunogenic, especially when genetically fused to Ad2F, and Ad2F can be exploited as a vaccine delivery platform to the mucosa.Item Open Access Enhancement of cardiac function after adenoviral-mediated in vivo intracoronary beta2-adrenergic receptor gene delivery.(J Clin Invest, 1999-07) Maurice, JP; Hata, JA; Shah, AS; White, DC; McDonald, PH; Dolber, PC; Wilson, KH; Lefkowitz, RJ; Glower, DD; Koch, WJExogenous gene delivery to alter the function of the heart is a potential novel therapeutic strategy for treatment of cardiovascular diseases such as heart failure (HF). Before gene therapy approaches to alter cardiac function can be realized, efficient and reproducible in vivo gene techniques must be established to efficiently transfer transgenes globally to the myocardium. We have been testing the hypothesis that genetic manipulation of the myocardial beta-adrenergic receptor (beta-AR) system, which is impaired in HF, can enhance cardiac function. We have delivered adenoviral transgenes, including the human beta2-AR (Adeno-beta2AR), to the myocardium of rabbits using an intracoronary approach. Catheter-mediated Adeno-beta2AR delivery produced diffuse multichamber myocardial expression, peaking 1 week after gene transfer. A total of 5 x 10(11) viral particles of Adeno-beta2AR reproducibly produced 5- to 10-fold beta-AR overexpression in the heart, which, at 7 and 21 days after delivery, resulted in increased in vivo hemodynamic function compared with control rabbits that received an empty adenovirus. Several physiological parameters, including dP/dtmax as a measure of contractility, were significantly enhanced basally and showed increased responsiveness to the beta-agonist isoproterenol. Our results demonstrate that global myocardial in vivo gene delivery is possible and that genetic manipulation of beta-AR density can result in enhanced cardiac performance. Thus, replacement of lost receptors seen in HF may represent novel inotropic therapy.Item Open Access Fibroblast growth factor-23-mediated inhibition of renal phosphate transport in mice requires sodium-hydrogen exchanger regulatory factor-1 (NHERF-1) and synergizes with parathyroid hormone.(The Journal of biological chemistry, 2011-10) Weinman, Edward J; Steplock, Deborah; Shenolikar, Shirish; Biswas, RajatsubhraFibroblast growth factor-23 (FGF-23) inhibits sodium-dependent phosphate transport in brush border membrane vesicles derived from hormone-treated kidney slices of the mouse and in mouse proximal tubule cells by processes involving mitogen-activated protein kinase (MAPK) but not protein kinase A (PKA) or protein kinase C (PKC). By contrast, phosphate transport in brush border membrane vesicles and proximal tubule cells from sodium-hydrogen exchanger regulatory factor-1 (NHERF-1)-null mice were resistant to the inhibitory effect of FGF-23 (10(-9) m). Infection of NHERF-1-null proximal tubule cells with wild-type adenovirus-GFP-NHERF-1 increased basal phosphate transport and restored the inhibitory effect of FGF-23. Infection with adenovirus-GFP-NHERF-1 containing a S77A or T95D mutation also increased basal phosphate transport, but the cells remained resistant to FGF-23 (10(-9) m). Low concentrations of FGF-23 (10(-13) m) and PTH (10(-11) m) individually did not inhibit phosphate transport or activate PKA, PKC, or MAPK. When combined, however, these hormones markedly inhibited phosphate transport associated with activation of PKC and PKA but not MAPK. These studies indicate that FGF-23 inhibits phosphate transport in the mouse kidney by processes that involve the scaffold protein NHERF-1. In addition, FGF-23 synergizes with PTH to inhibit phosphate transport by facilitating the activation of the PTH signal transduction pathway.Item Open Access In vivo ventricular gene delivery of a beta-adrenergic receptor kinase inhibitor to the failing heart reverses cardiac dysfunction.(Circulation, 2001-03-06) Shah, AS; White, DC; Emani, S; Kypson, AP; Lilly, RE; Wilson, K; Glower, DD; Lefkowitz, RJ; Koch, WJBACKGROUND: Genetic manipulation to reverse molecular abnormalities associated with dysfunctional myocardium may provide novel treatment. This study aimed to determine the feasibility and functional consequences of in vivo beta-adrenergic receptor kinase (betaARK1) inhibition in a model of chronic left ventricular (LV) dysfunction after myocardial infarction (MI). METHODS AND RESULTS: Rabbits underwent ligation of the left circumflex (LCx) marginal artery and implantation of sonomicrometric crystals. Baseline cardiac physiology was studied 3 weeks after MI; 5x10(11) viral particles of adenovirus was percutaneously delivered through the LCx. Animals received transgenes encoding a peptide inhibitor of betaARK1 (Adeno-betaARKct) or an empty virus (EV) as control. One week after gene delivery, global LV and regional systolic function were measured again to assess gene treatment. Adeno-betaARKct delivery to the failing heart through the LCx resulted in chamber-specific expression of the betaARKct. Baseline in vivo LV systolic performance was improved in Adeno-betaARKct-treated animals compared with their individual pre-gene delivery values and compared with EV-treated rabbits. Total beta-AR density and betaARK1 levels were unchanged between treatment groups; however, beta-AR-stimulated adenylyl cyclase activity in the LV was significantly higher in Adeno-betaARKct-treated rabbits compared with EV-treated animals. CONCLUSIONS: In vivo delivery of Adeno-betaARKct is feasible in the infarcted/failing heart by coronary catheterization; expression of betaARKct results in marked reversal of ventricular dysfunction. Thus, inhibition of betaARK1 provides a novel treatment strategy for improving the cardiac performance of the post-MI heart.Item Open Access Intracoronary adenovirus-mediated delivery and overexpression of the beta(2)-adrenergic receptor in the heart : prospects for molecular ventricular assistance.(Circulation, 2000-02-01) Glower, Donald D Jr; Hata, Jonathan Andrew; Koch, Walter J; Kypson, Alan P; Lefkowitz, Robert J; Lilly, R Eric; Pippen, Anne; Shah, AS; Silvestry, Scott Christopher; Tai, OliverBACKGROUND: Genetic modulation of ventricular function may offer a novel therapeutic strategy for patients with congestive heart failure. Myocardial overexpression of beta(2)-adrenergic receptors (beta(2)ARs) has been shown to enhance contractility in transgenic mice and reverse signaling abnormalities found in failing cardiomyocytes in culture. In this study, we sought to determine the feasibility and in vivo consequences of delivering an adenovirus containing the human beta(2)AR cDNA to ventricular myocardium via catheter-mediated subselective intracoronary delivery. METHODS AND RESULTS: Rabbits underwent percutaneous subselective catheterization of either the left or right coronary artery and infusion of adenoviral vectors containing either a marker transgene (Adeno-betaGal) or the beta(2)AR (Adeno-beta(2)AR). Ventricular function was assessed before catheterization and 3 to 6 days after gene delivery. Both left circumflex- and right coronary artery-mediated delivery of Adeno-beta(2)AR resulted in approximately 10-fold overexpression in a chamber-specific manner. Delivery of Adeno-betaGal did not alter in vivo left ventricular (LV) systolic function, whereas overexpression of beta(2)ARs in the LV improved global LV contractility, as measured by dP/dt(max), at baseline and in response to isoproterenol at both 3 and 6 days after gene delivery. CONCLUSIONS: Percutaneous adenovirus-mediated intracoronary delivery of a potentially therapeutic transgene is feasible, and acute global LV function can be enhanced by LV-specific overexpression of the beta(2)AR. Thus, genetic modulation to enhance the function of the heart may represent a novel therapeutic strategy for congestive heart failure and can be viewed as molecular ventricular assistance.Item Open Access Phenotypic and functional profile of HIV-inhibitory CD8 T cells elicited by natural infection and heterologous prime/boost vaccination.(Journal of virology, 2010-05) Freel, SA; Lamoreaux, L; Chattopadhyay, PK; Saunders, K; Zarkowsky, D; Overman, RG; Ochsenbauer, C; Edmonds, TG; Kappes, JC; Cunningham, CK; Denny, TN; Weinhold, KJ; Ferrari, G; Haynes, BF; Koup, RA; Graham, BS; Roederer, M; Tomaras, GDControl of HIV-1 replication following nonsterilizing HIV-1 vaccination could be achieved by vaccine-elicited CD8(+) T-cell-mediated antiviral activity. To date, neither the functional nor the phenotypic profiles of CD8(+) T cells capable of this activity are clearly understood; consequently, little is known regarding the ability of vaccine strategies to elicit them. We used multiparameter flow cytometry and viable cell sorts from phenotypically defined CD8(+) T-cell subsets in combination with a highly standardized virus inhibition assay to evaluate CD8(+) T-cell-mediated inhibition of viral replication. Here we show that vaccination against HIV-1 Env and Gag-Pol by DNA priming followed by recombinant adenovirus type 5 (rAd5) boosting elicited CD8(+) T-cell-mediated antiviral activity against several viruses with either lab-adapted or transmitted virus envelopes. As it did for chronically infected virus controllers, this activity correlated with HIV-1-specific CD107a or macrophage inflammatory protein 1beta (MIP-1beta) expression from HIV-1-specific T cells. Moreover, for vaccinees or virus controllers, purified memory CD8(+) T cells from a wide range of differentiation stages were capable of significantly inhibiting virus replication. Our data define attributes of an antiviral CD8(+) T-cell response that may be optimized in the search for an efficacious HIV-1 vaccine.Item Open Access Potentiation of beta-adrenergic signaling by adenoviral-mediated gene transfer in adult rabbit ventricular myocytes.(J Clin Invest, 1997-01-15) Drazner, MH; Peppel, KC; Dyer, S; Grant, AO; Koch, WJ; Lefkowitz, RJOur laboratory has been testing the hypothesis that genetic modulation of the beta-adrenergic signaling cascade can enhance cardiac function. We have previously shown that transgenic mice with cardiac overexpression of either the human beta2-adrenergic receptor (beta2AR) or an inhibitor of the beta-adrenergic receptor kinase (betaARK), an enzyme that phosphorylates and uncouples agonist-bound receptors, have increased myocardial inotropy. We now have created recombinant adenoviruses encoding either the beta2AR (Adeno-beta2AR) or a peptide betaARK inhibitor (consisting of the carboxyl terminus of betaARK1, Adeno-betaARKct) and tested their ability to potentiate beta-adrenergic signaling in cultured adult rabbit ventricular myocytes. As assessed by radioligand binding, Adeno-beta2AR infection led to approximately 20-fold overexpression of beta-adrenergic receptors. Protein immunoblots demonstrated the presence of the Adeno-betaARKct transgene. Both transgenes significantly increased isoproterenol-stimulated cAMP as compared to myocytes infected with an adenovirus encoding beta-galactosidase (Adeno-betaGal) but did not affect the sarcolemmal adenylyl cyclase response to Forskolin or NaF. beta-Adrenergic agonist-induced desensitization was significantly inhibited in Adeno-betaARKct-infected myocytes (16+/-2%) as compared to Adeno-betaGal-infected myocytes (37+/-1%, P < 0.001). We conclude that recombinant adenoviral gene transfer of the beta2AR or an inhibitor of betaARK-mediated desensitization can potentiate beta-adrenergic signaling.Item Open Access Preservation of myocardial beta-adrenergic receptor signaling delays the development of heart failure after myocardial infarction.(Proc Natl Acad Sci U S A, 2000-05-09) White, DC; Hata, JA; Shah, AS; Glower, DD; Lefkowitz, RJ; Koch, WJWhen the heart fails, there is often a constellation of biochemical alterations of the beta-adrenergic receptor (betaAR) signaling system, leading to the loss of cardiac inotropic reserve. betaAR down-regulation and functional uncoupling are mediated through enhanced activity of the betaAR kinase (betaARK1), the expression of which is increased in ischemic and failing myocardium. These changes are widely viewed as representing an adaptive mechanism, which protects the heart against chronic activation. In this study, we demonstrate, using in vivo intracoronary adenoviral-mediated gene delivery of a peptide inhibitor of betaARK1 (betaARKct), that the desensitization and down-regulation of betaARs seen in the failing heart may actually be maladaptive. In a rabbit model of heart failure induced by myocardial infarction, which recapitulates the biochemical betaAR abnormalities seen in human heart failure, delivery of the betaARKct transgene at the time of myocardial infarction prevents the rise in betaARK1 activity and expression and thereby maintains betaAR density and signaling at normal levels. Rather than leading to deleterious effects, cardiac function is improved, and the development of heart failure is delayed. These results appear to challenge the notion that dampening of betaAR signaling in the failing heart is protective, and they may lead to novel therapeutic strategies to treat heart disease via inhibition of betaARK1 and preservation of myocardial betaAR function.Item Unknown Restoration of beta-adrenergic signaling in failing cardiac ventricular myocytes via adenoviral-mediated gene transfer.(Proc Natl Acad Sci U S A, 1997-10-28) Akhter, SA; Skaer, CA; Kypson, AP; McDonald, PH; Peppel, KC; Glower, DD; Lefkowitz, RJ; Koch, WJCardiovascular gene therapy is a novel approach to the treatment of diseases such as congestive heart failure (CHF). Gene transfer to the heart would allow for the replacement of defective or missing cellular proteins that may improve cardiac performance. Our laboratory has been focusing on the feasibility of restoring beta-adrenergic signaling deficiencies that are a characteristic of chronic CHF. We have now studied isolated ventricular myocytes from rabbits that have been chronically paced to produce hemodynamic failure. We document molecular beta-adrenergic signaling defects including down-regulation of myocardial beta-adrenergic receptors (beta-ARs), functional beta-AR uncoupling, and an up-regulation of the beta-AR kinase (betaARK1). Adenoviral-mediated gene transfer of the human beta2-AR or an inhibitor of betaARK1 to these failing myocytes led to the restoration of beta-AR signaling. These results demonstrate that defects present in this critical myocardial signaling pathway can be corrected in vitro using genetic modification and raise the possibility of novel inotropic therapies for CHF including the inhibition of betaARK1 activity in the heart.Item Open Access Safety and efficacy of CMX001 as salvage therapy for severe adenovirus infections in immunocompromised patients.(Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation, 2012-05) Florescu, Diana F; Pergam, Steven A; Neely, Michael N; Qiu, Fang; Johnston, Christine; Way, SingSing; Sande, Jane; Lewinsohn, Deborah A; Guzman-Cottrill, Judith A; Graham, Michael L; Papanicolaou, Genovefa; Kurtzberg, Joanne; Rigdon, Joseph; Painter, Wendy; Mommeja-Marin, Herve; Lanier, Randall; Anderson, Maggie; van der Horst, CharlesNo therapeutic agent has yet been established as the definitive therapy for adenovirus infections. We describe the clinical experience of 13 immunocompromised patients who received CMX001 (hexadecyloxypropyl cidofovir), an orally bioavailable lipid conjugate of cidofovir, for adenovirus disease. We retrospectively analyzed 13 patients with adenovirus disease and viremia treated with CMX001; data were available for ≥ 4 weeks after initiation of CMX001 therapy. Virologic response (VR) was defined as a 99% drop from baseline or undetectable adenovirus DNA in serum. The median age of the group was 6 years (range, 0.92-66 years). One patient had severe combined immunodeficiency, 1 patient was a small bowel transplant recipient, and 11 were allogeneic stem cell transplant recipients. Adenovirus disease was diagnosed at a median of 75 days (range, 15-720 days) after transplantation. All patients received i.v. cidofovir for a median of 21 days (range, 5-90 days) before CMX001 therapy. The median absolute lymphocyte count at CMX001 initiation was 300 cells/μL (range, 7-1500 cells/μL). Eight patients (61.5%) had a ≥ 1 log10 drop in viral load after the first week of therapy. By week 8, 9 patients (69.2%) demonstrated a VR, with a median time to achieve VR of 7 days (range, 3-35 days). The change in absolute lymphocyte count was inversely correlated with the change in log10 viral load only at week 6 (r = -0.74; P = .03). Patients with VR had longer survival than those without VR (median 196 days versus 54.5 days; P = .04). No serious adverse events were attributed to CMX001 during therapy. CMX001 may be a promising therapeutic option for the treatment of severe adenovirus disease in immunocompromised patients.Item Open Access Safety and immunogenicity of a replication-defective adenovirus type 5 HIV vaccine in Ad5-seronegative persons: a randomized clinical trial (HVTN 054).(PLoS One, 2010-10-27) Peiperl, Laurence; Morgan, Cecilia; Moodie, Zoe; Li, Hongli; Russell, Nina; Graham, Barney S; Tomaras, Georgia D; De Rosa, Stephen C; McElrath, M Juliana; NIAID HIV Vaccine Trials NetworkBACKGROUND: Individuals without prior immunity to a vaccine vector may be more sensitive to reactions following injection, but may also show optimal immune responses to vaccine antigens. To assess safety and maximal tolerated dose of an adenoviral vaccine vector in volunteers without prior immunity, we evaluated a recombinant replication-defective adenovirus type 5 (rAd5) vaccine expressing HIV-1 Gag, Pol, and multiclade Env proteins, VRC-HIVADV014-00-VP, in a randomized, double-blind, dose-escalation, multicenter trial (HVTN study 054) in HIV-1-seronegative participants without detectable neutralizing antibodies (nAb) to the vector. As secondary outcomes, we also assessed T-cell and antibody responses. METHODOLOGY/PRINCIPAL FINDINGS: Volunteers received one dose of vaccine at either 10(10) or 10(11) adenovector particle units, or placebo. T-cell responses were measured against pools of global potential T-cell epitope peptides. HIV-1 binding and neutralizing antibodies were assessed. Systemic reactogenicity was greater at the higher dose, but the vaccine was well tolerated at both doses. Although no HIV infections occurred, commercial diagnostic assays were positive in 87% of vaccinees one year after vaccination. More than 85% of vaccinees developed HIV-1-specific T-cell responses detected by IFN-γ ELISpot and ICS assays at day 28. T-cell responses were: CD8-biased; evenly distributed across the three HIV-1 antigens; not substantially increased at the higher dose; and detected at similar frequencies one year following injection. The vaccine induced binding antibodies against at least one HIV-1 Env antigen in all recipients. CONCLUSIONS/SIGNIFICANCE: This vaccine appeared safe and was highly immunogenic following a single dose in human volunteers without prior nAb against the vector. TRIAL REGISTRATION: ClinicalTrials.gov NCT00119873.Item Open Access Targeting Gbeta gamma signaling in arterial vascular smooth muscle proliferation: a novel strategy to limit restenosis.(Proc Natl Acad Sci U S A, 1999-03-30) Iaccarino, G; Smithwick, LA; Lefkowitz, RJ; Koch, WJRestenosis continues to be a major problem limiting the effectiveness of revascularization procedures. To date, the roles of heterotrimeric G proteins in the triggering of pathological vascular smooth muscle (VSM) cell proliferation have not been elucidated. betagamma subunits of heterotrimeric G proteins (Gbetagamma) are known to activate mitogen-activated protein (MAP) kinases after stimulation of certain G protein-coupled receptors; however, their relevance in VSM mitogenesis in vitro or in vivo is not known. Using adenoviral-mediated transfer of a transgene encoding a peptide inhibitor of Gbetagamma signaling (betaARKct), we evaluated the role of Gbetagamma in MAP kinase activation and proliferation in response to several mitogens, including serum, in cultured rat VSM cells. Our results include the striking finding that serum-induced proliferation of VSM cells in vitro is mediated largely via Gbetagamma. Furthermore, we studied the effects of in vivo adenoviral-mediated betaARKct gene transfer on VSM intimal hyperplasia in a rat carotid artery restenosis model. Our in vivo results demonstrated that the presence of the betaARKct in injured rat carotid arteries significantly reduced VSM intimal hyperplasia by 70%. Thus, Gbetagamma plays a critical role in physiological VSM proliferation, and targeted Gbetagamma inhibition represents a novel approach for the treatment of pathological conditions such as restenosis.Item Open Access The actin cytoskeleton as a barrier to virus infection of polarized epithelial cells.(Viruses, 2011-12-21) Delorme-Axford, Elizabeth; Coyne, Carolyn BMany diverse viruses target a polarized epithelial monolayer during host invasion. The polarized epithelium is adept at restricting the movement of solutes, ions, macromolecules, and pathogens across the mucosa. This regulation can be attributed to the presence of a junctional complex between adjacent cells and to an intricate network of actin filaments that provides support to the subapical membrane and stabilizes intercellular junctions. It is therefore not surprising that many viruses have evolved highly varied strategies to dissolve or modulate the cortical actin meshwork to promote infection of polarized cells. In this review, we will discuss the cell biological properties of the actin cytoskeleton in polarized epithelial cells and review the known mechanisms utilized by viral pathogens to manipulate this system in order to facilitate their infection.Item Open Access Utility of telomerase-pot1 fusion protein in vascular tissue engineering.(Cell Transplant, 2010) Petersen, Thomas H; Hitchcock, Thomas; Muto, Akihito; Calle, Elizabeth A; Zhao, Liping; Gong, Zhaodi; Gui, Liqiong; Dardik, Alan; Bowles, Dawn E; Counter, Christopher M; Niklason, Laura EWhile advances in regenerative medicine and vascular tissue engineering have been substantial in recent years, important stumbling blocks remain. In particular, the limited life span of differentiated cells that are harvested from elderly human donors is an important limitation in many areas of regenerative medicine. Recently, a mutant of the human telomerase reverse transcriptase enzyme (TERT) was described, which is highly processive and elongates telomeres more rapidly than conventional telomerase. This mutant, called pot1-TERT, is a chimeric fusion between the DNA binding protein pot1 and TERT. Because pot1-TERT is highly processive, it is possible that transient delivery of this transgene to cells that are utilized in regenerative medicine applications may elongate telomeres and extend cellular life span while avoiding risks that are associated with retroviral or lentiviral vectors. In the present study, adenoviral delivery of pot1-TERT resulted in transient reconstitution of telomerase activity in human smooth muscle cells, as demonstrated by telomeric repeat amplification protocol (TRAP). In addition, human engineered vessels that were cultured using pot1-TERT-expressing cells had greater collagen content and somewhat better performance in vivo than control grafts. Hence, transient delivery of pot1-TERT to elderly human cells may be useful for increasing cellular life span and improving the functional characteristics of resultant tissue-engineered constructs.