Analysis of the divide-and-conquer method for electronic structure calculations

Loading...
Thumbnail Image

Date

2017-04-26

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

138
views
141
downloads

Abstract

We study the accuracy of the divide-and-conquer method for electronic structure calculations. The analysis is conducted for a prototypical subdomain problem in the method. We prove that the pointwise difference between electron densities of the global system and the subsystem decays exponentially as a function of the distance away from the boundary of the subsystem, under the gap assumption of both the global system and the subsystem. We show that gap assumption is crucial for the accuracy of the divide-and-conquer method by numerical examples. In particular, we show examples with the loss of accuracy when the gap assumption of the subsystem is invalid.

Department

Description

Provenance

Citation

Scholars@Duke

Lu

Jianfeng Lu

James B. Duke Distinguished Professor

Jianfeng Lu is an applied mathematician interested in mathematical analysis and algorithm development for problems from computational physics, theoretical chemistry, materials science, machine learning, and other related fields.

More specifically, his current research focuses include:
High dimensional PDEs; generative models and sampling methods; control and reinforcement learning; electronic structure and many body problems; quantum molecular dynamics; multiscale modeling and analysis.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.