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We study the electroencephalogram �EEG� of 30 closed-eye awake subjects with a technique of analysis
recently proposed to detect punctual events signaling rapid transitions between different metastable states.
After single-EEG-channel event detection, we study global properties of events simultaneously occurring
among two or more electrodes termed coincidences. We convert the coincidences into a diffusion process with
three distinct rules that can yield the same � only in the case where the coincidences are driven by a renewal
process. We establish that the time interval between two consecutive renewal events driving the coincidences
has a waiting-time distribution with inverse power-law index ��2 corresponding to ideal 1 / f noise. We argue
that this discovery, shared by all subjects of our study, supports the conviction that 1 / f noise is an optimal
communication channel for complex networks as in art or language and may therefore be the channel through
which the brain influences complex processes and is influenced by them.
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I. INTRODUCTION

The phenomenon of inverse-power-law power spectra,
termed 1 / f noise, is believed by many to be the signature of
complexity. Herein we retain the commonly used term noise,
even though, one might argue, we should more appropriately
use the term signal, since the phenomenon naturally emerges
from data produced by complex systems. Leaving this argu-
ment aside, we elect to describe the spectrum of variability
of the most complex network of all, the human brain, as 1 / f
noise. We further note that in literature, and also in the case
of the physiological processes driven by the brain, some re-
searchers use the term 1 / f� rather than 1 / f noise �1�, imply-
ing that 1 / f is a particular condition corresponding to �=1,
while many other authors use the term 1 / f noise to refer to
inverse-power-law power spectra regardless of the index. To
minimize the confusion caused by this extended definition of
1 / f noise, we shall throughout adopt the latter definition and
refer to the case �=1 as ideal 1 / f noise, since real complex
networks generate noise in a range 0.5���1.5.

A. 1 Õ f noise in the brain

The origins of 1 / f noise have challenged theoretical
physicists for the past century. As far as neural dynamics is
concerned, for example, the fluctuating reaction times gener-
ated by the cognitive processes stimulated by psychological
tests have a 1 / f noise character �2,3�. It is not yet determined
if these highly correlated fluctuations are generated either by
the oscillatory neural synchronization advocated by Medina
�4� or by the spontaneous phase-transition process of many
interacting neurons proposed by Bianco et al. �5�, or by yet
to be uncovered complex dynamic processes. The phase-

transition conjecture fits the criticality condition stressed in
the recent neurophysiological literature �see, e.g., Ref. �6��.
This condition will be discussed in some detail in Sec. V.

Many authors have investigated the brain dynamics via
the analysis of electroencephalogram �EEG� records either
studying the time decay of the autocorrelation function, or,
alternatively, by directly studying its Fourier transform, i.e.,
the power spectrum. The latter measure records inverse-
power-law spectral indexes � ranging from 0.36 to values
slightly larger than 1.0 �2,7,8�. In particular, the authors of
Ref. �8� studied the correlation function using a data-driven
diffusion technique similar to the one that we propose herein
and evaluated the EEG spectrum in the open-eyes condition.
They found values of � slightly larger than 1, suggesting, as
will become clear subsequently, that the brain lives in a non-
stationary nonergodic condition.

The differences in the values of the inverse power-law
indices obtained for the brain can be explained in part by the
fact that a variety of physiological conditions and techniques
have been used. However, from the experimental finding of
the condition ��1 in Ref. �8� one may draw some conclu-
sions about the origin of 1 / f noise, which, in turn, clarifies
why the evaluation of the index � is so elusive.

We remark that the condition ��1 is not compatible with
stationary autocorrelation functions and that a direct applica-
tion of the Wiener-Kinchine theorem to brain wave data
leads to the paradoxical consequence of correlations indefi-
nitely growing in time. The only available theoretical ap-
proach compatible with the experimental observation of �
�1 makes recourse to renewal events. We stress that this
approach is able to explain the extended memory implied by
1 / f noise, even in the extreme condition of ��1, as will be
discussed in Secs. II and V.
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B. 1 Õ f noise from renewal events

It is thought that the 1 / f noise observed throughout hu-
man physiology and behavior reflects the coordinative, meta-
stable basis of cognition �9,10�. In Sec. III we further discuss
the metastability of the EEG signal for the purpose of illus-
trating the transitions from one to another metastable state
realized though abrupt changes that are the candidates of
renewal events to detect.

Let us consider a sequence of events characterized by
their occurrence times �tn�, or, alternatively, by the sequence
��n� of time intervals between successive events. These
events are said to be renewal if all �i� ��n� are mutually
statistically independent random variables, a property that, as
shown in Sec. V, does not conflict with the existence of a
very extended memory �11�. Following Lowen and Teich
�12�, let us assume that the interval between two consecutive
events is described by a waiting-time distribution density
����, which becomes proportional to 1 /�� for �→�. We
denote the moments of the waiting time by

��n	 =
 �n����d� . �1�

Let us focus our attention on

1 � � � 3, �2�

which makes the second moment ��2	 diverge. We refer
throughout to these events as crucial, since, as discussed in
Secs. II and V, signals driven by such events show long-time
correlations called intermittency in the physics literature. No-
tice that the condition ��2 implies the first moment ��	
diverges as well, with an even more striking departure from
the conditions of ordinary statistical physics. This condition
yields such an extended memory that the system is in fact
incompatible with the existence of equilibrium, whereas for
the condition 2���3 equilibrium exists, but it takes an
infinitely long time to reach it from an initial out-of-
equilibrium condition �13�.

Renewal events may be used to generate an artificial sig-
nal ��t�, with a power spectrum 1 / f�, where � depends on
the rules adopted to generate the signal. We report on the
theoretical predictions for �, i.e., the spectral index of the
artificial signal, as a function of �, i.e., the index for the
renewal statistics. In Sec. II we provide methods of analysis
to compute � using the same artificial-signal methodology.

Let us call laminar regions the time intervals between two
consecutive crucial events. Consider now the case when the
signal ��t� vanishes in the whole laminar region, and it
achieves a nonvanishing constant value only at the times
when a crucial event occurs, namely, the case where the sig-
nal is a sequence of pulses of constant intensity. For this
artificial signal the power-law index is given for various val-
ues of the renewal index

� = �� − 1 if 1 � � � 2

3 − � if 2 	 � 	 3

0 if � � 3.
� �3�

If we adopt a different prescription to generate the signal
��t�, by assigning to each laminar region either the value 1 or

−1, according to a coin-tossing procedure �14�, we have the
spectral index

� = 3 − � . �4�

It is interesting to notice that when

� = 2 �5�

we obtain ideal 1 / f noise in both cases. It is also interesting
to notice that Eq. �4� is compatible with a range of values
0���2 and in particular is able to yield ��1 if ��2. We
stress, and we shall come back to this point in Sec. II, that
the artificial signal ought not to be confused with a model for
the signal under study, from which events have been de-
tected. The artificial signal is intended to demonstrate how
1 / f noise and renewal processes can be related in general.

The direct evaluation of the 1 / f-index � from signals gen-
erated by renewal events is a delicate task. Margolin and
Barkai �15� adopted the prescription leading to the relation
between indices �Eq. �4�� and pointed out the irretrievably
nonstationary character of the underlying process for the
condition ��2. In spite of this nonstationarity they suc-
ceeded in generalizing the Wiener-Kinchine theorem, whose
ordinary form holds true only in the stationary case. They
also derived for the spectrum P�f�, when ��2,

P�f� 

1

f3−�L2−� , �6�

where L is the length of the time series under study. In this
case the longer the sequence, the weaker the noise intensity.
Lukovic and Grigolini �16� supported this conclusion and
emphasized the nonstationary character of the whole region
�2� of parameter values. Nonstationary effects are not easily
revealed for � significantly larger than 2, where the spectrum
P�f� is virtually independent of the sequence length L. How-
ever, the nonstationary nature of the process becomes strong
as we approach the unique value �=2 either from above or
from below thereby requiring the average over many realiza-
tions of the underlying physical process. This suggests why
the spectrum of a single EEG is never smooth.

As an indirect indication of the presence and fundamental
role of crucial events, we note that neuron systems have been
determined to be more sensitive to 1 / f signals than to white
noise �17�. This observation is consistent with the complex-
ity matching �CM� principle, according to which the trans-
mission of information preferentially occurs between com-
plex networks with the same complexity �i.e., the same �
index� �13�, due to the actions of renewal events.

C. Complexity matching

There is general agreement that the brain is a source of
1 / f noise �13�. This perspective also suggests why 1 / f spec-
tra are present in language and in the artwork of the masters
�18�, which are a product of the creativity and variability of
the brain. Using the CM principle �13�, understanding why
music exerts its spell on the brain �19� becomes evident as
well. In fact, it is well known that music generates 1 / f spec-
tra �20� and some authors believe in the so-called “Mozart
effect,” namely, that certain types of music may correlate
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with higher levels of creative and analytic reasoning and
more generally with intelligence �21�. The neural foundation
of the decision making processes �22� is, at the same time, of
fundamental importance for the emerging science of neuro-
economics �23�, which revives some of the pioneering ideas
of Samuelson �24�.

The authors of Ref. �25� established a connection between
Zipf’s law in natural human language and the scale-free se-
mantic networks �26� leading to the conclusion that the ideal
Zipf’s law corresponds to the boundary value �=2. The
small excursions above the boundary ensure the stability
necessary for learnability and those below the boundary
make it possible to explore a virtually infinite cognitive
space thereby allowing language to evolve. It is worth men-
tioning that there exists a close connection between Zipf’s
law and phase-transition processes. Cancho and Solé �27�
have proposed a dynamic approach to Zipf’s law based on a
control parameter � denoting the speaker ��� and hearer �1
−�� in the communication effort. At a critical value �� a
phase transition occurs corresponding to the emergence of
Zipf’s law.

D. Purpose and outline of the paper

All this background is attractive and exciting, but the fact
remains that it is not yet proved in a way that has been
universally accepted that the brain generates 1 / f noise. Prov-
ing that the brain’s 1 / f noise emerges from the renewal con-
dition would provide a solid foundation for the science of
socioneurophysiological processes. However, proving that
the brain’s 1 / f noise is renewal and based on nonstationary
fluctuations is a source of confusion, affected by statistical
errors, making a direct proof extremely difficult. The main
purpose of this paper is to afford this proof, and to do that,
for the reasons earlier discussed, we have to find an alterna-
tive procedure to the direct evaluation of the spectrum.

The outline of the paper is as follows. In Sec. II we re-
view the rules for a random walk process used to generate a
diffusion process from a sequence of events and we give
theoretical predictions for the scaling coefficients of the pro-
cesses in terms of the renewal index �. In Sec. III we give
details on how to identify the events with rapid transitions
between global EEG metastable states. In Sec. IV we show
how scaling parameters are detected from such events. In
Sec. V we recall some recent findings suggesting that the
brain is a system at a critical transition point, and we discuss
how renewal properties naturally emerge in critical systems.
These renewal processes are in turn responsible for very ex-
tended memory as we explain. Finally, in Sec. VI we illus-
trate the trade-off among different prescriptions yielding the
main result of this paper, that the dynamics of the brain is
driven by renewal events with �=2.

II. EVENT-DRIVEN RANDOM WALKS

In Sec. I we mentioned two prescriptions to generate an
event-driven signal ��t�. We again alert the reader to the fact
that none of these rules is expected to exactly correspond to
a brain generated signal. These rules show to what an extent

ideal artificial signals driven only by crucial events generate
a diffusion process whose scaling properties depend on the
statistics of crucial events. Note, for instance, that with the
rule yielding Eq. �4� we generate a signal that does not seem
to bear a direct connection with crucial events insofar as the
occurrence of an event does not necessarily generate a jump.
In fact, at the moment when an event occurs, the fluctuation
��t� with probability of 1/2 may keep the same sign as in the
earlier laminar region. Although the signal ��t� obtained by
filling the laminar regions with alternate signs may seem to
establish a more direct connection with crucial events, we do
not propose either of them to model brain’s dynamics.

In fact, we use the walking rules as a procedure to mea-
sure the complexity of coincidences, and these coincidences
are real brain events detected by means of the procedure
described in Sec. III. This analysis, as we discuss herein, is
robust against the fact that some events may not be detected
and that we may also have artifactual false positives. As far
as a model is concerned, crucial events may trigger some
complicated dynamics which may, at the level of the signal,
create a distortion of the detected value of �. This will be the
subject of further studies. However, we argue that the long-
time properties of the signal are probably completely domi-
nated by the action of crucial events.

In this section we review the exact theoretical predictions
stemming from renewal theory, which are the basis of the
methods of analysis used in Sec. IV. Following the sugges-
tions of the authors of Refs. �28,29�, in addition to the rules
of Eqs. �3� and �4�, we find it useful to adopt a third rule
proposed by the authors of Ref. �30�. The random walker at
the moment of an event occurrence can either make a jump
forward or backward according to a coin-tossing prescrip-
tion. These three rules make the diffusing variable x�t�
=
0

t ��t��dt� yield different scaling coefficients �28�.
The statistical properties of the variable x�t� are related to

the autocorrelation function of the signal itself via

C�t� �
�y�0�y�t�	

�y2	
=

1

2

d2���x2�t�	 − ��x�t�	2�
dt2 , �7�

where y=�− ��	, and �x�x�tw+ t�−x�tw�, tw denoting the be-
ginning of the moving windows, over which the statistics are
built and averages � · 	 are performed �time averages�. The
Fourier transform of C�t� is the power spectrum. The func-
tion p��x ,�t� is the probability density of finding a displace-
ment around �x in a time window of length �t. We have a
scaling relation if

p��x,�t� = F� �x

�t
� 1

�t
 , �8�

where F�x� is a normalized distribution density. The first
factor on the right-hand side of Eq. �8� tells us that �x
��t
, while the second factor is only normalization. It is
useful to study the second moment of the displacement,
namely, the function which is differentiated twice in Eq. �7�
defining an index H via
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��x2��t�	 − ��x��t�	2 = K�t2H, �9�

where K is a constant. If the scaling was perfect, as in frac-
tional Brownian motions, H=
. When the diffusion process
is driven by renewal events, H and 
 are slightly different in
the 1 / f regime studied herein. It is, however, always true that
Eq. �9�, making use of Eq. �7� and of a Tauberian theorem,
yields �=2H−1 and that H�
 when ��1, namely, in the
case of ideal 1 / f noise. Notice further that the generated
artificial signal has long-range correlations when H�0.5.

With rule no. 1, termed the asymmetric jump �AJ� in Ref.
�28�, the signal is kept constant with ��t�=0 within the lami-
nar region and ��t�=1 at the time of an event occurrence.
This rule generates


 = � − 1, H =
�

2
�10�

for 1���2 and


 =
1

� − 1
, H = 2 −

�

2
�11�

for 2���3.
With rule no. 2, termed the symmetric velocity �SV� in

�28�, the signal is kept constant with ��t�= �1 within the
laminar region, and a change in sign may or may not occur,
at the time of an event occurrence, according to a coin-
tossing procedure. This rule yields


 = 1, H = 2 −
�

2
�12�

for 1��	2 and


 =
1

� − 1
, H = 2 −

�

2
�13�

for 2���3. It is important to stress that for ��2 the
second-moment prediction is apparently unphysical given
the fact that in the traditional stationary case the scaling H
=1, the well known ballistic condition, is the impassable
maximum scaling value: no diffusion can spread faster than
walkers running with constant velocity with no direction
change. However, if we abandon the traditional stationary
perspective and we take into account the ergodicity break-
down generated by �	2 we find that this apparently impass-
able limit can be overcome �31�.

Finally, with rule no. 3, termed the symmetric jump �SJ�
in �28�, the signal is kept constant with ��t�=0 within the
laminar region and ��t�= �1 at the time of an event occur-
rence selected by coin tossing. This rule generates


 = H =
� − 1

2
�14�

for 1��	2 and


 = H =
1

2
�15�

for ��2.

To establish our claim that the brain is the source of ideal
1 / f noise we have to find a sequence of brain events that are
global �32� and not specifically related to a single function.
Then we have to prove that the diffusion processes generated
by rules no. 1, no. 2, and no. 3 yield 
=H=1, 
=H=1, and

=H=0.5, respectively.

The joint use of these different rules allows us to settle
some ambiguities. According to the authors of Ref. �28� the
method of diffusion entropy �DE� that we shall revise in Sec.
IV A becomes an accurate scaling detector when rule no. 1
�AJ� is used. However, we see that according to Eqs. �10�
and �11� of rule no. 1, the same value of 
 fitting the condi-
tion 0.5�
�1 is compatible with both �=1+
�2 and �
=1+1 /
�2, respectively, thereby assigning to rule no. 3
�SV� or no. 2 �SJ� the crucial role of establishing if ��2 or
��2 given the fact that in the former case rule no. 3 would
yield 
= ��−1� /2�0.5 and in the latter 
=1. The detection
of H for the signal generated using rule no. 1 �AJ� is affected
by a similar ambiguity for the evaluation of �. The compari-
son of the three rules, as will become clear in Sec. IV, makes
the analysis able to deal with spurious events, which can be
treated as superimposed noise.

We shall see that in addition to the nonergodic nature of
the condition �	2, we have to take into account also an
additional form of nonstationary behavior represented by
nonstationary drifts in the signal. For this reason we shall
follow the advice of the authors of �33� and evaluate both the
scaling index 
 using the DE method �28� and the second-
moment index H by means of the well known detrended
fluctuation analysis �DFA� �34�. As we shall see, this has the
effect of reducing the influence of the nonstationary drifts.

III. SEARCH FOR THE RAPID TRANSITION
PROCESSES: DETAILS ON THE METHOD

A. General remarks

How can we detect a sequence of cerebral events that may
be good candidates for satisfying all the above properties?
We examine the EEG of 30 closed-eye subjects, namely, se-
quences characterized by the presence of “trains” of �
waves. All subjects signed an informed consent according to
the University of Pisa Ethical Committee guidelines. In the
neurophysiological literature there is increasing conviction
that brain dynamics is characterized by quakes �35� and ava-
lanches �36–38�. The authors of Ref. �39� have recently pro-
posed a method of analysis of electroencephalograms �EEG�
and magnetoencephalograms �MEG� whose task is to iden-
tify the time points at which the EEG/MEG amplitude
abruptly changes. These authors call these events rapid tran-
sition processes �RTPs�. The RTPs have a short time duration
and have been treated by them as point or near-point events.
However, a thorough study on single channels shows signifi-
cant variability among channels and among subjects �40�.
Moreover, single-channel RTPs are not assumed to provide
information on global brain processes thought to be associ-
ated with cognition. For this reason we make the key con-
jecture that the multichannel RTPs �MC-RTPs�, defined as
the temporal RTP coincidences among different channels, are
the real source of 1 / f spectra.
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The EEG signal has, in general, time varying statistical
properties; i.e., it is nonstationary. Some research work �39�
suggests that the basic source of the observed nonstationarity
in EEG signals is not due to the influences of external stimuli
on the brain but it rather reflects the switching among meta-
stable states of neural assemblies during brain functioning.
According to this scenario a neuronal assembly is a group of
neurons for which coordinated activity persists over substan-
tial time intervals and underlies basic operations of informa-
tion processing. At the level of EEG recordings these inter-
vals should be reflected in periods of quasistationary signals.
The occurrence of a crucial event represents the abrupt tran-
sition from one stationary condition to another. The majority
of crucial events is associated with transition intensity of
moderate size and remains unnoticed.

B. Segmentation of the EEG signals

Herein, with the term “segmentation” we mean the proce-
dure by which each EEG signal has been processed to unveil
its hidden piecewise stationary structure. In other words, seg-
mentation means looking for the abrupt changes in EEG am-
plitude �RTPs� that glue together quasistationary EEG signal
segments. The EEG segmentation method adopted herein is
derived by the two-stage procedure proposed by Kaplan and
co-workers in �39�. The segmentation algorithm is composed
of two main stages: �1� a preliminary identification of the
RTPs; �2� a selection of the actual RTPs on the basis of the
steepness of the previously detected EEG amplitude changes.
We remark that this method is nonparametric; i.e., it does not
require parameter estimation of a given mathematical model
for the detections of abrupt changes in EEG amplitude.
Moreover, it is adaptive, since it uses local statistics of the
signal around each detected point.

Stage �1� consists of two steps: �1a� the estimation of the
envelope �i.e., the local amplitude� of each EEG signal and
�1b� the detection of the abrupt changes in the EEG local
amplitude time series. Step �1a� is performed applying the
Hilbert transform �41� to the EEG signal and considering the
modulus of the corresponding analytic signal. The obtained
series constitutes the so-called test sequence �TS� �42�,
whose modifications are analyzed in step �1b�. Step �1b�, the
basic procedure of segmentation, rests on comparing the on-
going instantaneous amplitude series with its average level
over a surrounding window. To this aim, a smoothed test
sequence termed level sequence �LS� has been derived from
the previous one with an even-weighted moving-average fil-
ter �700 msec window length�. In the case of rapid amplitude
changes in the EEG, the LS will update its values with time
delay with respect to the nonsmoothed TS. The time loca-
tions of each intersection between TS and LS can thus be
considered as preliminary RTPs �39�.

Stage �2� aims at overcoming a first step pitfall: some of
the intersections between the two series do not correspond to
a discontinuity between quasistationary EEG segments and
thus false RTPs, related to brief anomalous peaks in the test
sequence, may occur. According to Kaplan et al. �39�,
anomalous peaks �either related to very tight pairs of inter-
sections or without a steady separation between the two se-

ries� can be effectively selected out by noticing that the slope
of the TS around a false RTP should be less steep than that
around actual RTPs and should be similar to that of any other
point in the TS. To filter out false RTPs we used the time
derivative of the TS calculated by means of a convolution
with a symmetrical window �50 msec wide� characteristic
function �with value 1 inside the window, 0 outside�. Look-
ing at the modulus of the derivative signal, we remove seg-
ments �100 ms wide� centered around the time locations of
the preliminary RTP and we estimate the probability density
function of the remaining signal. On the basis of this distri-
bution, a threshold aiming at discriminating actual from false
RTP has been calculated as the 99th percentile of the distri-
bution. Namely, we required that the TS at actual RTPs ex-
hibits high slope absolute values that are uncommon among
slopes of TS generic points. Needless to say that the appli-
cation of this threshold criterion for the recognition of actual
RTPs implies that only a portion of the occurring RTPs are
detected.

C. Multichannel RTP detection

As mentioned above, the identification of RTPs that are
concurrent among EEG channels �MC-RTPs� allows infer-
ences about the dynamics of large-scale cortical interactions
in recruitment/selection of neuronal populations forming
metastable assemblies �43�. In fact, the integrated behavior
of the brain is confirmed by the fact that RTPs simulta-
neously occur in two or more EEG channels more often than
expected by chance �39�. The study of waiting times between
MC-RTPs allows the estimation of the lifetime of the large-
scale functional assemblies of neurons. For each EEG re-
cording, the sequence of MC-RTPs is obtained from single-
channel RTPs via the introduction of two thresholds: the first
one, �tc, defines the maximum time distance for two single-
channel RTPs �from different channels� to be considered
concurrent; the second one, Nt, defines the minimum number
of concurrent single-channel RTPs required for a MC-RTPs
to be recorded as a global event. Since events that have a
distance less than �tc are considered to be simultaneous, �tc
must be small. We herein use, unless differently stated �e.g.,
in Figs. 1 and 5�, �tc equal to the time resolution of our
recording, namely, 2.0 ms. Analogously, unless differently
stated, we take Nt=2.

∆tc = 10ms,Nt = 4
∆tc = 10ms,Nt = 2
∆tc = 6ms,Nt = 4
∆tc = 6ms,Nt = 2
∆tc = 2ms,Nt = 4
∆tc = 2ms,Nt = 2S(t)

t (ms)

δ
SJ

= 0.5

104103102101100

5

4

3

2

1

0

FIG. 1. S�t� for rule no. 3 �SJ�, for subject 6 with different
choices of Nt and �tc.
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IV. ANOMALOUS DIFFUSION

A. Diffusion entropy

Given a diffusion process

ẋ = � ⇒ �x = 

tw

tw+�t

��t��dt�, �16�

the three rules determine the value of the variable � with
respect to time t. For each rule we determine p��x ,�t� and
calculate the Shannon entropy of the diffusion process
�hence the name diffusion entropy�

S��t� � − 

−�

+�

p��x,�t�ln p��x,�t�d�x . �17�

Using scaling condition �8�, it is straightforward to prove
that

S��t� = 
 ln �t + S0, �18�

where S0=−
−�
+�F�x�ln F�x�dx. Notice that the scaling is in

fact asymptotic, namely, it is only exact for t→�. There is,
however, always a time T denoting the time it takes for this
asymptotic behavior to be reached. To take this property into
account we assume

S��t� = 
 ln��t + T� + S0. �19�

The DE method of analysis makes it possible for us to detect
the scaling index 
 by plotting the Shannon functional and
thus determine 
 by fitting the right-hand side of Eq. �19� to
the data. Since the DE technique rests on a smooth evalua-
tion of the distribution density, rule no. 2, corresponding to
SV, is not numerically reliable due to data sparseness. In
particular the support of p��x ,�t� is as large as �x assuming
all possible values in the interval �−�t ,�t� with many
“holes.” This is especially crucial for the DE analysis, which
rests on the evaluation of the probability density function,
and therefore, from a numerical standpoint, on the size of the
histogram bins. On the other hand, for rules no. 1 �AJ� and
no. 3 �SJ� DE rapidly converges, as the support of �x keeps
its compactness for larger values of �t, with respect to rule
no. 2 �SV�. In these cases the results are stable for a wide
range of bin sizes.

Let us now study how scaling detection changes with re-
spect to different choices of the arbitrary thresholds Nt and
�tc earlier defined in Sec. III. Let us recall that coincidences
have been defined in Sec. III C as events characterized by at
least two channels �Nt=2� exhibiting RTP within a time dis-
tance of �tc=2.0 ms, the sampling time of the EEG. Figure
1 shows that the detected scaling index 
 is robust with re-
spect to the choice of different threshold values for Nt and
�tc. As an example, curves in Fig. 1 correspond to rule no. 3
and subject 6, and the detected value for 
 is always 

�0.5. Remarkably, this robustness with respect to threshold
values was confirmed also for rule no. 1 and for all subjects.

Figure 2 shows the DE in action for AJ and SJ for subjects
7 and 22. The two figures �Figs. 2�a� and 2�b�� are remark-
ably similar. We note that this condition of remarkable simi-

larity applies to all 30 subjects in our study; all of them yield
the same fitting quality as that illustrated by Figs. 2�a� and
2�b�.

As far as the scaling coefficients 
AJ and 
SJ are con-
cerned, it is evident how close they are by examining the
scatter plots shown in Fig. 3. Figure 3�a� shows that the
detected values of 
AJ, which in general can be any number
in the interval �0,1�, are densely populated near the right
limit of this interval, with values close to 1. Notice in fact
that in Fig. 3�a� the 
AJ axis was chosen between 0.75 and 1
to look for possible correlations between 
AJ and 
SJ in this
limited range. Even more remarkably, 
SJ, which in general
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FIG. 2. Diffusion entropy S�t� for rules no. 1 �AJ� and no. 3 �SJ�
for subjects 7 and 22.
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stands in the interval �0,0.5�, has, for almost all subjects,
values slightly above 0.5. A 
SJ�0.5 is a symptom of some
statistical inaccuracy or of some drift, violating the assump-
tion that the brain dynamics, although nonstationary, is
driven by rules that do not change with time. We briefly
discuss this point later in this section when describing Fig. 4.
We are inclined to believe that these values indicate a 
SJ
�0.5, and therefore �SJ�2. The scatter plot of Fig. 3�a�
does not show any correlation between the values of 
AJ and

SJ, and therefore the different values detected in different
subjects do not support indication of subject effect �namely
different subjects having different ��, but rather a statistical
spreading of the measured values, due to data limitation.

Although it is not possible to derive � using rule no. 3
�SJ� alone, rule no. 1 �AJ�, however, can be used to calculate
a value of �AJ through the first equality of Eq. �11�. This is
shown in Fig. 3�b� as a function of the subject number.

In short, we evaluate the average �AJ over our set of
subjects together with its standard deviation. We find �̄AJ
=2.16 with standard deviation 0.08. Therefore, we conclude
that the DE analysis yields

� = 2.16 � 0.16 �20�

at the 95% confidence level. Result �20� is based on Eq. �11�,
and therefore on the assumption that ��2. This assumption
is justified by the fact that ��2 yields 
SJ�0.5 in disagree-
ment with our finding. However, from a theoretical view-
point, it may be argued that some white or almost white
noise is superimposed within the data yielding 
AJ�0.5 even
when ��2. We therefore report the mean and standard de-
viation of �AJ calculated using Eq. �10� based on the as-
sumption ��2. These values are, respectively, �̄AJ=1.87
with standard deviation 0.06 yielding �=1.87�0.12. We see
that in both cases the value of � is close to 2.

As earlier mentioned, some discussion is in order about

SJ�0.5 shown in Fig. 3�a�. Figure 4�a� shows tn vs n for
subject 2, where

tn = �
i=1

n

�i �21�

are the times at which events are detected, and �i is the time
duration of the ith laminar region between two consecutive
MC-RTP events �coincidences�.

A straight line indicates a stationary rate of RTP. On the
contrary, we see that there are two epochs with two different
slopes graphically separated by a pointing-down arrow. Fig-
ure 4�b� confirms the same behavior by plotting �n vs n. This
behavior is present in most subjects of our set. Subjects are
in basal condition, namely, they are put at rest with closed
eyes. In spite of the assumption that the process is renewal,
and that the rules generating the times �n do not depend on
time, it seems that the RTPs become less frequent after some
time subjects are put at rest. From a signal-processing point
of view, there is a nonstationarity, yet to be clarified, of a
different kind of that generated by ��2. A possible cause
may be that putting a subject at rest with closed eyes corre-
sponds to generating a slow switch from one to another con-
dition thereby yielding the nonstationary drift depicted in
Fig. 4. Regardless of its origin, this drift, however, explains
why in most cases 
�0.5, even though this is a forbidden
region for the SJ rule. In other words, the time evolution
after the pointing-down arrow generates long laminar regions
that produce uniform motion for very extended times, more
extended than those generated by the renewal prescription
with �=2. We make the conjecture that these more extended
laminar regions are the consequence of a systematic drift in
EEG data and do not interfere with the renewal dynamics.
For this reason in the next subsection we adopt the DFA
method, which is well known for its capability of annihilat-
ing the consequences of systematic effects of this kind.

B. Detrended fluctuation analysis

In this subsection we briefly describe the DFA of Peng et
al. �34�. The signal preprocessing is similar to that adopted
for the DE, as both analyses rely on the diffusion processes
stemming from the event identification with the help of the
three rules for defining the “velocity” signal ��t�, or, better,
��n�, when n is a discrete time.

We then define a diffusion process Xn as

Xn = �
i=1

t

���i� − ��	� , �22�

where ��	 is the global average of the signal, so that, being N
total length of the signal, X0=XN=0. Next, Xt is divided into
nonoverlapping time windows of length t, and, for each win-
dow, a local least-squares straight line fit �the local trend� is
calculated by minimizing the squared error E2 with respect to
the slope and intercept parameters a and b, namely,
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FIG. 4. �a� tn vs n for subject 2. �b� �n vs n, same subject.
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E2 = �
i=1

t

�Xi − ai − b�2. �23�

Next, the mean-square deviation from the trend, the fluctua-
tion, is calculated over every window at every time scale:

F2�t� =
1

t
�
i=1

t

�Xi − ai − b�2. �24�

Finally, we average F�t� over all windows and we notice that
its root rescales as tH, namely,

��t� =� 1

NW
�

windows
F�t� 
 tH, �25�

where NW= �N / t� is the number of the windows. This is ex-
pected, since, apart from the detrending procedure, this cal-
culation is essentially a second-moment evaluation.

As done previously when illustrating the results of the DE
analysis, we show the behavior for different threshold values.
This is illustrated by Fig. 5 for subject 2 and for the SJ
walker rule �rule no. 3�. Also in this case we find HSJ�0.5,
namely, ��2.

In Fig. 6 we show the DFA for four subjects with remark-
ably similar behaviors. Notice this is true for all of the 30
subjects, even the ones not shown. We have HAJ�1 and
HSJ�0.5, establishing that ��2, and therefore an ideal 1 / f
noise.

Notice that the DFA procedure does not require the calcu-
lation of the probability density function of the diffusion pro-
cess, and therefore the procedure is not influenced by the
compactness of the support of this density. It was, therefore,
possible to use rule no. 2 or SV. It has to be noticed, how-
ever, that this rule becomes statistically unstable for large
time windows with respect to the other rules. However, we
see ballistic behavior for short and intermediate time win-
dows, where we fitted HSV to the data. As a result, we see
that for all subjects in our set, we have that HSV�1. Figures
7 show this degree of universality via scatter plots of scal-
ings H.

As expected, the results are not different from those stem-
ming from DE. However, some further information can be
extracted from this analysis. First of all, we see that DFA
annihilates the observation-induced drift of Fig. 4, and the
detected distribution of HSJ is now centered around 0.5. This

confirms that the behavior of Fig. 3 was induced by a non-
stationary drift of the data, which was in fact able to affect
the detected 
 value but was not related to the renewal index
� of the underlying dynamics. No correlation is visible in
any scatter plot of Fig. 7 proving that the spreading of the
values is due to statistical limitation rather than subject ef-
fects. The fact that we may conclude that for each subject
HSJ=0.5 leads us to the assumption ��2. The results re-
semble the results earlier shown using DE, and our conjec-
ture that ��2 is therefore confirmed. We synthetically re-
port the result for the AJ rule, as it is virtually able to span all
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FIG. 5. ��t� for rule no. 3 �SJ�, for subject 2 with different
choices of NT and �tc.
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the possible values in the interval �1,3�. Also in this case we
report the average and the standard deviation on our set of
subjects. These are 2.12 and 0.06, respectively, yielding

� = 2.12 � 0.12 �26�

at the 95% confidence level.
As earlier discussed in the case of the DE analysis, also in

this case we have assumed ��2, but we may also explore
the case ��2, imagining that a white noise superimposed to
the data may yield HSJ�0.5 even in this case. The evalua-
tion of the mean value of �AJ again yields �̄AJ=1.88, with
standard deviation 0.06, or, at the 95% confidence level, �
=1.88�0.12.

As earlier mentioned in Sec. II, the results stemming from
the application of rule no. 1 �AJ� are ambiguous, even if in
both cases � is close to the boundary value �=2. Let us now
eliminate this ambiguity and calculate the index �̄ stemming
from walking rule no. 2 or SV. Equations �12� and �13� tell
us that ��H� is the same for both ��2 and ��2 �8�. We see
that in all 30 cases we have that ��2. The corresponding
average index is �̄SV=2.13, with standard deviation 0.05, so
that

� = 2.13 � 0.10 �27�

at the 95% confidence level, confirming both results �20� and
�26� and proving that � is slightly larger but close to 2.

It is worth pointing out that we limited ourselves to study-
ing the closed-eye condition. The open-eye condition has
been studied in an earlier work �8� using the DFA. It is of
remarkable interest that these authors found H to be slightly

larger than 1. According to the theoretical analysis of Ref.
�31� this is a consequence of the nonergodic nature of the
condition ��2 that makes H exceed the ballistic limit.
Buiatti et al. �8� found that H changes from subject to subject
with fluctuations from H=1.2 to H=1.94. The results of Fig.
6 show that our analysis of closed-eye subject by means of
the DFA always yields H�1 thereby confirming that the
closed-eye condition corresponds to ��2, although only
slightly larger than 2. We also make the conjecture that, in
addition to the nonergodic nature of �	2, the transition
from the open-eye to the resting state generated by the EEG
analysis in the closed-eye condition may be a long-lasting
process generating the observation-induced drift revealed by
the results of Fig. 4.

Our conclusion is expressed by Eq. �26�. We established
the underlying existence of renewal crucial events by means
of the fact that three independent analyses stemming from
three different rules for constructing ��t�, studying either the
scaling index 
 or H, yield essentially identical results in
Eqs. �20�, �26�, and �27�. We further discuss this conclusion
in Sec. VI.

V. RENEWAL AND MEMORY

The conclusion that the brain is characterized by renewal
events, with ��2, apparently conflicts with the observation
that thinking requires highly correlated dynamics in both
time and space. This observation seems to challenge the
main result of this paper that the brain dynamics is driven by
crucial events, namely, events with an inverse power-law dis-
tribution density and a power index � that is contained in the
middle of the interval of crucial events of Eq. �2�. In fact, the
renewal events, by definition, imply that the time intervals
between two consecutive events are independent of each
other thereby giving the misleading impression that the re-
sulting process is incompatible with any form of memory.
This observation is also the reason why the experimental
discovery of 1 / f noise in the brain �7,8� is not perceived as
conflicting with the assumption of self-organization. In fact,
on the one hand, the celebrated theory of self-organized criti-
cality �44�, which is frequently invoked for neurophysiologi-
cal applications �36–38�, was originally created to explain
the origin of 1 / f noise. On the other hand, the predominant
view on the origin of 1 / f noise is that it corresponds to
fluctuating variables with extremely slow correlation func-
tions �45�. Although the renewal approach to 1 / f noise is not
unknown in the literature �12�, only recently it has become
clear that the 1 / f noise emerging from the transition to criti-
cality is renewal �46�. The authors of Ref. �46� proved the
1 / f noise emerging from the self-organization of defects in
liquid crystals is incompatible with the existence of station-
ary correlation functions thereby implying the breakdown of
ergodicity, a property frequently invoked in statistical phys-
ics.

First of all, let us explain why there is no contradiction
between self-organization and renewal, and let us rather
show that the brain dynamics, being determined by a process
of self-organization, must produce renewal events. To sup-
port this claim we refer to the three recent papers �47–49�.
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The important paper �47� shows that the distribution of
functional connections is generated by a scale-free network
thereby suggesting a structural as well as a dynamical origin
of the brain function, with the brain displaying an emergent
state from a number of precise and successive events making
the output of a brain highly reproducible and robust. How-
ever, the more recent paper �48� proves that these emergent
properties are mainly dynamical rather than structural. In
fact, Freiman et al. �48� show that the same scale-free prop-
erties as those observed by the authors of Ref. �47� are gen-
erated by the interactions of the nodes of a two-dimensional
lattice, where each unit interacts with four nearest neighbors:
a condition incompatible with the emergence of a topologi-
cally determined leadership. The scale-free network gener-
ated by the interacting spins of the Ising model of �48� is
indistinguishable from the scale-free network emerging from
the experimental observation in both �47,48�.

The connections between the structural properties, whose
dynamical origin is made compelling by the work of Ref.
�48�, and non-Poisson intermittence are established by the
decision making model of Ref. �49�. This decision making
model is similar to the Ising model of Ref. �48�. The single
units are two-state systems, as in the case of Ref. �48�, and
the cooperation among the units is established by assuming
that the nearest neighbors of a given unit generate a bias on
the choice of each unit. In the case of all-to-all coupling with
an infinite number of nodes this model generates the same
ferromagnetic phase transition as the Ising model, although
the cooperation strength is not expressed in terms of tem-
perature. When the number of units is not infinite, the onset
of phase transition is accompanied by non-Poisson fluctua-
tions characterized by �=1.5, a value of the power index �
that in this case is predicted by an analytical treatment �49�.
The renewal character of the intermittent process generated
by the onset of phase transition has been carefully and accu-
rately proved �49�. The connection between phase transition
and non-Poisson and renewal intermittence is a general prop-
erty of phase-transition process, as proved, for instance, by
the authors of Ref. �50�, who applied their theoretical ap-
proach directly to the Ising model.

On the basis of these remarks, we make the reasonable
conjecture that the coincidences are a signature of the abrupt
changes in structure configuration that must affect the pat-
terns revealed by analysis �47,48�. In fact, all the nodes of
Ref. �48� are equivalent. Moreover, it is not possible to jus-
tify the scale-free distribution of correlation-induced links
without the assumption that this is a stable property corre-
sponding to time-dependent structures. In such dynamic
structures the leadership role, that is the role of hubs or stars,
moves from one node to another in time without disrupting
the regular topology used by the authors of Ref. �48�. The
important work of Ref. �48� does not afford any direct infor-
mation on the fluctuating dynamics of the network leaders,
and we are convinced that the present paper suggests the
proper theoretical perspective to fill this gap.

Finally, let us explain why the crucial renewal events
rather than being incompatible with memory are, in a sense,
a manifestation of memory much more extended than the
widely quoted memory of relaxation processes without re-
newal events. Let us consider first the case 2���3 and the

dichotomous fluctuation corresponding to rule no. 2 in the
special case where all the sequences at t=0 are characterized
by an event. This is a special preparation condition that
serves the purpose of illustrating the surprising nature of
these renewal processes. The autocorrelation function of the
dichotomous fluctuation is given by �13�

��ta = 0,t� = � T

t + T
��−1

�28�

as a function of the argument t, which is set to 0 at the
beginning of the observation process, whereas ta is a param-
eter denoting the time interval between “preparation” �the
first event� and “observation” �t=0�. This analytical form is
selected as the simplest form satisfying the normalization
condition ��ta=0,0�=1. When we make an experimental
observation at very long times this correlation function be-
comes �13�

��ta = �,t� = � T

t + T
��−2

, �29�

and it is indistinguishable from the autocorrelation function
of a fluctuation ��t� with no crucial events

���t� = � T

t + T
��

, �30�

which is frequently used �13� to explain the origin of the
ideal 1 / f noise for �→0, with the formula

� = 1 − � . �31�

We see, however, that by identifying � with �−2, we re-
cover the prescription of Eq. �4�. This relationship between
indices shows that crucial renewal events are compatible
with the existence of memory as extended in time as the
memory of the fluctuations with the slowest possible auto-
correlation function.

Now, let us show that the crucial renewal events with �
�2 correspond to an even more extended memory. If we
make the assumption that the aged autocorrelation function
of Eq. �29� holds true also when ��2 we obtain the appar-
ently strange �51� condition of an autocorrelation function
increasing rather than decreasing upon time increase. Al-
though this is not a correct representation of the condition
��2, it gives an intuitive understanding of the impressively
extended time correlation of the renewal processes with �
�2. The correct approach to 1 / f noise, in this case, rests on
the evaluation of the waiting-time distribution density that,
as shown in Ref. �16�, has the following form:

��ta = 0,t� = �� − 1�
T�−1

�t + T�� �32�

as well as

��ta = �,t� 

1

�t + T��−1 . �33�

In the case ��2 the form of Eq. �33� is made compatible
with the normalization requirement by the fact that the ex-
perimental sequence has a finite length L �16� thereby yield-
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ing the unusual property of Eq. �6� with a noise intensity that
becomes weaker with time and consequently with the in-
crease in L.

VI. CONCLUDING REMARKS

The theoretical approach to 1 / f noise emerging from the
recent work of Refs. �15,16� rests on the assumption that
only crucial events exist, namely, unpredictable quakes sepa-
rated by time intervals, whose length is described by an
inverse-power-law distribution density with index � fitting
the condition 1���3. It is interesting to notice that the
authors of Ref. �52� find for the time duration of phase-lock
interval, or duration of coupling between a pair of neuro-
physiological processes, distribution densities with � belong-
ing to the same range. The condition of ideal 1 / f noise
emerges from the further idealized assumption that �=2. It
is evident that the brain’s complexity may largely depart
from these idealizations mainly because a single-channel
EEG is expected to depend only indirectly on crucial events.
Moreover, setting the subjects in the basal state may generate
a nonstationary drift in addition to the renewal nonstationar-
ity associated with the condition ��2.

The role of these disturbances has been significantly
weakened by moving from the observation of single EEG
processes to the statistical analysis of coincidences among
the RTP of different channels �MC-RTP�. The intuitive ex-
planation of why coincidences are closer to crucial events is
because crucial events are global properties of the brain as a
whole �32�, and the cognitive function of the brain is deter-
mined by the interaction among different areas �53�. How-
ever, focusing on coincidences is not yet enough to identify
with absolute certainty the crucial events. The determination
of occurrence time of a crucial event is affected by errors,
which can be interpreted as the manifestation of a perturbing
noise. This explains why in the short-time region the scaling
H determined by using the DFA method is very close to the
ordinary value H=0.5 regardless of whether we use rule no.
1 �AJ�, which, with no noise disturbance, should generate
anomalous scaling �H�0.5�, or rule no. 3 �SJ�, which, on the
contrary, in the same ideal condition should yield ordinary
scaling in the whole region ��2. It is easy to prove that the
addition of noisy perturbance to the crucial events generates
a diffusion process that in the long-time limit is dominated
by anomalous scaling. Extensive analyses not reported here
�40�, both on single-channel RTPs and on MC-RTPs, confirm
that the renewal character of the signal can be measured
using the procedure of Ref. �54�: the resulting renewal index
�defined in �55�� is not consistent with perfect renewal, but
only with partial renewal. In other words, noise breaks down
the renewal character of detected events, therefore, prevent-
ing a direct evaluation of � from ��t�, but, as established in
�56�, does not change the diffusion scaling indexes H and 

of the underlying renewal process.

In addition to the errors affecting the crucial event detec-
tion, we have to take into account the statistical fluctuations
generated by the lack of a sufficiently large number of cru-
cial events. This has the effect of making the statistics behind
rule no. 2 �SV� too poor for the diffusion process to correctly

generate H=1. In fact, in the long-time limit the probability
distribution density generated by rule no. 2 is very broad
thereby generating statistical inaccuracy, whereas with the
adoption of the AJ model, rule no. 1, the broadening is made
more moderate by the systematic shift of the distribution
density �28�. The adoption of the DFA method has the benefit
of annihilating the observation-induced nonstationary effects
that make the scaling 
 detected by the DE method fluctuate
around a value significantly larger than 0.5. However, at the
same time the DFA method may generate the misleading
impression that the long-time scale yields a regression to
ordinary statistics, if only rule no. 2 was adopted. In spite of
the misleading information generated by the action of events
that are not the genuinely crucial events, hypothesized by the
1 / f-law theory �15,16�, we did succeed in determining the
power index � of the brain’s dynamics as a result of a trade-
off among DE, DFA, and three walking rules.

In conclusion, we have established that the brain’s dy-
namics at rest is characterized by crucial events with �=2, or
slightly larger, with an error of about 7%. We hope that the
assessment of this property may have interesting interdisci-
plinary consequences. First of all we note that �=2, or
slightly larger, is the same fractal index as that involved in
language �25,27� thereby suggesting that the brain’s dynam-
ics is the ultimate origin of Zipf’s law. At this level it is
extremely interesting to notice, for instance, that the study of
language in schizophrenics is associated with an anomalous
Zipf’s law �57�, and hence with an alteration of its renewal
index � �25�. From an inferential point of view this is in line
with the hypothesis of Feinberg and Guazzelli �58� on alter-
ation of functional connectivity in cortical and subcortical
structures. Making the conjecture that it is possible to iden-
tify the � of the language and the � of EEG dynamics in
schizophrenic patients may lead to the design of methods for
the therapists to establish efficient interactions with these
patients, and, hopefully, new therapeutic strategies.

It is important to stress that in the literature the emergence
of 1 / f noise from the brain dynamics is widely recognized.
In addition to the earlier quoted papers, we would like to
mention also the work of Refs. �59,60�. These papers estab-
lish a correspondence between the emergence of 1 / f noise
and phase-transition processes �61� thought to be a natural
outcome of self-organized criticality �60�. The correlation
between neural activity and the emergence of slow fluctua-
tions �62� affords another clue for the origin of 1 / f noise and
for the origin of memory discussed in Sec. V. Does this paper
conflict with this literature? Although this literature, as ear-
lier pointed out, ignores the role of renewal events, this does
not necessarily imply that there is a conflict between the
perspective outlined in this paper and this literature. As a
relevant example, we would like to quote Ref. �63�. The
authors of this interesting paper show that slowly driven sys-
tems can evolve to a self-organized critical state yielding
1 / f� noise. They claim that the dynamics discussed in their
paper cannot be reduced to a renewal process with a power-
law distribution of waiting time. This would imply a conflict
with the perspective adopted in this paper. Yet, the work of
Ref. �63� is closely related to an earlier work �64�, where
interevent time distances with an inverse power law appear.
These events are characterized, in the case of samples of size
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large enough, by vanishing Lyapunov coefficients, a sign of
their renewal nature �65�. On the one hand, affording a com-
pelling proof of the existence of leading events of renewal
nature is a hard task �54� given the fact that they may be
embedded in a cascade of nonrenewal events that obscure the
real nature of the crucial events, even though they are the
cause of this cascade �66�. On the other hand, it is worth-
while to discuss the possible consequences of the renewal
nature of the brain.

The determination of the renewal nature of the brain’s
dynamics should make it possible to go beyond the generic
observation that the brain is a source of 1 / f noise and is most
sensitive to 1 / f stimuli. In fact, the CM principle �13� is an
attractive conjecture that has been recently proved by means
of rigorous theoretical arguments �67�. It is now well under-
stood that the information transfer from one complex net-
work to another becomes maximally efficient if both systems
are driven by crucial events with �=2. The CM effect can be
used to explain the influence of arts on the brain. In fact,
according to Yevin �68� both artistic compositions and the
brain are systems in the critical condition thereby realizing
the condition for the optimal information transport behind
the CM effect �67�.

As far as the contribution to the brain’s neurophysiology
is concerned, we have found a stable 1 / f spectrum dominat-
ing brain dynamics of healthy awake subjects during a
minimal-stimulation condition. This is a special condition
since relaxed individuals were asked to avoid structured
thoughts, so that memories and thoughts would freely
emerge, without any influence of external stimuli. In our fu-
ture investigations we shall verify if the scale-free character-
istic of brain dynamics is a brain structural property or a
behavior-dependent property. As extreme condition of envi-
ronment disconnection, the 1 / f rule could be verified during
sleep. Also the study of brain dynamics during stimulations
could be useful, since it may lead us to establish that the
brain’s sensitivity to 1 / f noise is a manifestation of the CM
principle �67� which makes 1 / f systems maximally sensitive
to 1 / f stimuli. Thus, the recognition that the brain’s dynam-
ics is a generator of ideal 1 / f noise is expected to open the
door to the design of the proper stimuli for therapeutic pur-
poses.
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