Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling and simulation of a nanoscale optical computing system

View / Download
2.2 Mb
Date
2014-01-01
Authors
Pang, J
Lebeck, AR
Dwyer, C
Repository Usage Stats
150
views
293
downloads
Abstract
Optical nanoscale computing is one promising alternative to the CMOS process. In this paper we explore the application of Resonance Energy Transfer (RET) logic to common digital circuits. We propose an Optical Logic Element (OLE) as a basic unit from which larger systems can be built. An OLE is a layered structure that works similar to a lookup table but instead uses wavelength division multiplexing for its inputs and output. Waveguides provide a convenient mechanism to connect multiple OLEs into large circuits. We build a SPICE model from first principles for each component to estimate the timing and power behavior of the OLE system. We analyze various logic circuits and the simulation results show that the components are theoretically correct and that the models faithfully reproduce the fundamental phenomena; the power-delay product of OLE systems is at least 2.5× less than the 14 nm CMOS technology with 100× better density. © 2013 Elsevier Inc. All rights reserved.
Type
Journal article
Permalink
https://hdl.handle.net/10161/10280
Published Version (Please cite this version)
10.1016/j.jpdc.2013.07.006
Publication Info
Pang, J; Lebeck, AR; & Dwyer, C (2014). Modeling and simulation of a nanoscale optical computing system. Journal of Parallel and Distributed Computing, 74(6). pp. 2470-2483. 10.1016/j.jpdc.2013.07.006. Retrieved from https://hdl.handle.net/10161/10280.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Christopher Dwyer

Associate Professor in the Department of Electrical and Computer Engineering
Dr. Chris Dwyer received his B.S. in computer engineering from the Pennsylvania State University in 1998, and his M.S. and Ph.D. in computer science from the University of North Carolina at Chapel Hill in 2000 and 2003, respectively.
This author no longer has a Scholars@Duke profile, so the information shown here reflects their Duke status at the time this item was deposited.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University