Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Research and Writings
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Research and Writings
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Data-Driven Jump Detection Thresholds for Application in Jump Regressions

Thumbnail
View / Download
633.9 Kb
Date
2015-09-17
Authors
Tauchen, GE
Davies, R
Repository Usage Stats
173
views
203
downloads
Abstract
This paper develops a method to select the threshold in threshold-based jump detection methods. The method is motivated by an analysis of threshold-based jump detection methods in the context of jump-diffusion models. We show that over the range of sampling frequencies a researcher is most likely to encounter that the usual in-fill asymptotics provide a poor guide for selecting the jump threshold. Because of this we develop a sample-based method. Our method estimates the number of jumps over a grid of thresholds and selects the optimal threshold at what we term the “take-off” point in the estimated number of jumps. We show that this method consistently estimates the jumps and their indices as the sampling interval goes to zero. In several Monte Carlo studies we evaluate the performance of our method based on its ability to accurately locate jumps and its ability to distinguish between true jumps and large diffusive moves. In one of these Monte Carlo studies we evaluate the performance of our method in a jump regression context. Finally, we apply our method in two empirical studies. In one we estimate the number of jumps and report the jump threshold our method selects for three commonly used market indices. In the other empirical application we perform a series of jump regressions using our method to select the jump threshold.
Type
Journal article
Subject
efficient estimation
high-frequency data
jumps
semimartingale
specification test
stochastic volatility
Permalink
https://hdl.handle.net/10161/13224
Collections
  • Research and Writings
More Info
Show full item record

Scholars@Duke

Tauchen

George E. Tauchen

William Henry Glasson Distinguished Professor Emeritus
George Tauchen is the William Henry Glasson Professor of Economics and professor of finance at the Fuqua School of Business. He joined the Duke faculty in 1977 after receiving his Ph.D. from the University of Minnesota. He did his undergraduate work at the University of Wisconsin. Professor Tauchen is a fellow of the Econometric Society, the American Statistical Association, the Journal of Econometrics, and the Society for Financial Econometrics (SoFie). He is also the 2003 Duke University Sc

Material is made available in this collection at the direction of authors according to their understanding of their rights in that material. You may download and use these materials in any manner not prohibited by copyright or other applicable law.

Rights for Collection: Research and Writings


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University