Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fast Dissemination of New HIV-1 CRF02/A1 Recombinants in Pakistan.

Thumbnail
View / Download
2.3 Mb
Date
2016
Authors
Chen, Yue
Hora, Bhavna
DeMarco, Todd
Shah, Sharaf Ali
Ahmed, Manzoor
Sanchez, Ana M
Su, Chang
Carter, Meredith
Stone, Mars
Hasan, Rumina
Hasan, Zahra
Busch, Michael P
Denny, Thomas N
Gao, Feng
Show More
(14 total)
Repository Usage Stats
135
views
136
downloads
Abstract
A number of HIV-1 subtypes are identified in Pakistan by characterization of partial viral gene sequences. Little is known whether new recombinants are generated and how they disseminate since whole genome sequences for these viruses have not been characterized. Near full-length genome (NFLG) sequences were obtained by amplifying two overlapping half genomes or next generation sequencing from 34 HIV-1-infected individuals in Pakistan. Phylogenetic tree analysis showed that the newly characterized sequences were 16 subtype As, one subtype C, and 17 A/G recombinants. Further analysis showed that all 16 subtype A1 sequences (47%), together with the vast majority of sequences from Pakistan from other studies, formed a tight subcluster (A1a) within the subtype A1 clade, suggesting that they were derived from a single introduction. More in-depth analysis of 17 A/G NFLG sequences showed that five shared similar recombination breakpoints as in CRF02 (15%) but were phylogenetically distinct from the prototype CRF02 by forming a tight subcluster (CRF02a) while 12 (38%) were new recombinants between CRF02a and A1a or a divergent A1b viruses. Unique recombination patterns among the majority of the newly characterized recombinants indicated ongoing recombination. Interestingly, recombination breakpoints in these CRF02/A1 recombinants were similar to those in prototype CRF02 viruses, indicating that recombination at these sites more likely generate variable recombinant viruses. The dominance and fast dissemination of new CRF02a/A1 recombinants over prototype CRF02 suggest that these recombinant have more adapted and may become major epidemic strains in Pakistan.
Type
Journal article
Permalink
https://hdl.handle.net/10161/13340
Published Version (Please cite this version)
10.1371/journal.pone.0167839
Publication Info
Chen, Yue; Hora, Bhavna; DeMarco, Todd; Shah, Sharaf Ali; Ahmed, Manzoor; Sanchez, Ana M; ... Gao, Feng (2016). Fast Dissemination of New HIV-1 CRF02/A1 Recombinants in Pakistan. PLoS One, 11(12). pp. e0167839. 10.1371/journal.pone.0167839. Retrieved from https://hdl.handle.net/10161/13340.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Denny

Thomas Norton Denny

Professor in Medicine
Thomas N. Denny, MSc, M.Phil, is the Chief Operating Officer of the Duke Human Vaccine Institute (DHVI) and the Center for HIV/AIDS Vaccine Immunology (CHAVI), and a Professor of Medicine in the Department of Medicine at Duke University Medical Center. He is also an Affiliate Member of the Duke Global Health Institute. He has recently been appointed to the Duke University Fuqua School of Business Health Sector Advisory Council. Previously, he was an Associate Professor of Pathology, Laboratory M
Gao

Feng Gao

Professor Emeritus in Medicine
Dr. Feng Gao is Professor of Medicine at Duke University. The Gao laboratory has a long-standing interest in elucidating the origins and evolution of human and simian inmmunodeficiency viruses (HIV and SIV), and in studying HIV/SIV gene function and pathogenic mechanisms from the evolutionary perspective. These studies have led to new strategies to better understand HIV origins,  biology, pathogenesis and drug resistance, and to design new AIDS vaccines.
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University