Thermodynamic Limit of Crystal Defects with Finite Temperature Tight Binding

Loading...
Thumbnail Image

Date

2017-04-23

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

147
views
135
downloads

Abstract

We consider a tight binding model for localised crystalline defects with electrons in the canonical ensemble (finite electronic temperature) and nuclei positions relaxed according to the Born--Oppenheimer approximation. We prove that the limit model as the computational domain size grows to infinity is formulated in the grand-canonical ensemble for the electrons. The Fermi-level for the limit model is fixed at a homogeneous crystal level, independent of the defect or electron number in the sequence of finite-domain approximations. We quantify the rates of convergence for the nuclei configuration and for the Fermi-level.

Department

Description

Provenance

Citation

Scholars@Duke

Lu

Jianfeng Lu

James B. Duke Distinguished Professor

Jianfeng Lu is an applied mathematician interested in mathematical analysis and algorithm development for problems from computational physics, theoretical chemistry, materials science, machine learning, and other related fields.

More specifically, his current research focuses include:
High dimensional PDEs; generative models and sampling methods; control and reinforcement learning; electronic structure and many body problems; quantum molecular dynamics; multiscale modeling and analysis.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.