Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Setting objective thresholds for rare event detection in flow cytometry

Thumbnail
View / Download
2.5 Mb
Date
2014-01-01
Authors
Richards, A
Staats, Janet
Enzor, Jennifer
McKinnon, K
Frelinger, J
Denny, Thomas Norton
Weinhold, Kent James
Chan, C
Show More
(8 total)
Repository Usage Stats
115
views
83
downloads
Abstract
The accurate identification of rare antigen-specific cytokine positive cells from peripheral blood mononuclear cells (PBMC) after antigenic stimulation in an intracellular staining (ICS) flow cytometry assay is challenging, as cytokine positive events may be fairly diffusely distributed and lack an obvious separation from the negative population. Traditionally, the approach by flow operators has been to manually set a positivity threshold to partition events into cytokine-positive and cytokine-negative. This approach suffers from subjectivity and inconsistency across different flow operators. The use of statistical clustering methods does not remove the need to find an objective threshold between between positive and negative events since consistent identification of rare event subsets is highly challenging for automated algorithms, especially when there is distributional overlap between the positive and negative events ("smear"). We present a new approach, based on the Fβ measure, that is similar to manual thresholding in providing a hard cutoff, but has the advantage of being determined objectively. The performance of this algorithm is compared with results obtained by expert visual gating. Several ICS data sets from the External Quality Assurance Program Oversight Laboratory (EQAPOL) proficiency program were used to make the comparisons. We first show that visually determined thresholds are difficult to reproduce and pose a problem when comparing results across operators or laboratories, as well as problems that occur with the use of commonly employed clustering algorithms. In contrast, a single parameterization for the Fβ method performs consistently across different centers, samples, and instruments because it optimizes the precision/recall tradeoff by using both negative and positive controls. © 2014 Elsevier B.V.
Type
Journal article
Permalink
https://hdl.handle.net/10161/14706
Published Version (Please cite this version)
10.1016/j.jim.2014.04.002
Publication Info
Richards, A; Staats, Janet; Enzor, Jennifer; McKinnon, K; Frelinger, J; Denny, Thomas Norton; ... Chan, C (2014). Setting objective thresholds for rare event detection in flow cytometry. Journal of Immunological Methods, 409. pp. 54-61. 10.1016/j.jim.2014.04.002. Retrieved from https://hdl.handle.net/10161/14706.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Denny

Thomas Norton Denny

Professor in Medicine
Thomas N. Denny, MSc, M.Phil, is the Chief Operating Officer of the Duke Human Vaccine Institute (DHVI) and the Center for HIV/AIDS Vaccine Immunology (CHAVI), and a Professor of Medicine in the Department of Medicine at Duke University Medical Center. He is also an Affiliate Member of the Duke Global Health Institute. He has recently been appointed to the Duke University Fuqua School of Business Health Sector Advisory Council. Previously, he was an Associate Professor of Pathology, Laboratory M
Weinhold

Kent James Weinhold

Joseph W. and Dorothy W. Beard Distinguished Professor of Experimental Surgery
In addition to their ongoing HIV/AIDS-related research activities, the Weinhold Laboratory is focused on utilizing a comprehensive repertoire of highly standardized and formerly validated assay platforms to profile the human immune system in order to identify immunologic signatures that predict disease outcomes. These ongoing studies span a broad range of highly relevant clinical arenas, including: 1) cancer (non-small cell lung cancer, head and neck cancer, glioblastoma neof
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University