Derivation of the Maxwell-Schrödinger Equations from the Pauli-Fierz Hamiltonian

Loading...
Thumbnail Image

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

258
views
185
downloads

Abstract

We consider the spinless Pauli-Fierz Hamiltonian which describes a quantum system of non-relativistic identical particles coupled to the quantized electromagnetic field. We study the time evolution in a mean-field limit where the number $N$ of charged particles gets large while the coupling to the radiation field is rescaled by $1/\sqrt{N}$. At time zero we assume that almost all charged particles are in the same one-body state (a Bose-Einstein condensate) and we assume also the photons to be close to a coherent state. We show that at later times and in the limit $N \rightarrow \infty$ the charged particles as well as the photons exhibit condensation, with the time evolution approximately described by the Maxwell-Schr"odinger system, which models the coupling of a non-relativistic particle to the classical electromagnetic field. Our result is obtained by an extension of the "method of counting", introduced by Pickl, to condensates of charged particles in interaction with their radiation field.

Department

Description

Provenance

Citation


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.