# Browsing by Subject "math.MP"

Now showing 1 - 20 of 38

###### Results Per Page

###### Sort Options

Item Open Access A Mathematical Theory of Optimal Milestoning (with a Detour via Exact Milestoning)(2017-04-23) Lin, L; Lu, J; Vanden-Eijnden, EMilestoning is a computational procedure that reduces the dynamics of complex systems to memoryless jumps between intermediates, or milestones, and only retains some information about the probability of these jumps and the time lags between them. Here we analyze a variant of this procedure, termed optimal milestoning, which relies on a specific choice of milestones to capture exactly some kinetic features of the original dynamical system. In particular, we prove that optimal milestoning permits the exact calculation of the mean first passage times (MFPT) between any two milestones. In so doing, we also analyze another variant of the method, called exact milestoning, which also permits the exact calculation of certain MFPTs, but at the price of retaining more information about the original system's dynamics. Finally, we discuss importance sampling strategies based on optimal and exact milestoning that can be used to bypass the simulation of the original system when estimating the statistical quantities used in these methods.Item Open Access A Mean Field Limit for the Vlasov–Poisson System(Archive for Rational Mechanics and Analysis, 2017-09) Lazarovici, D; Pickl, P© 2017, Springer-Verlag Berlin Heidelberg. We present a probabilistic proof of the mean field limit and propagation of chaos N-particle systems in three dimensions with positive (Coulomb) or negative (Newton) 1/r potentials scaling like 1/N and an N-dependent cut-off which scales like N - 1 / 3 + ϵ . In particular, for typical initial data, we show convergence of the empirical distributions to solutions of the Vlasov–Poisson system with either repulsive electrical or attractive gravitational interactions.Item Open Access A Quantum Kinetic Monte Carlo Method for Quantum Many-body Spin Dynamics(2017-11-30) Cai, Z; Lu, JWe propose a general framework of quantum kinetic Monte Carlo algorithm, based on a stochastic representation of a series expansion of the quantum evolution. Two approaches have been developed in the context of quantum many-body spin dynamics, using different decomposition of the Hamiltonian. The effectiveness of the methods is tested for many-body spin systems up to 40 spins.Item Open Access A Variation on the Donsker-Varadhan Inequality for the Principial Eigenvalue(2017-04-23) Lu, Jianfeng; Steinerberger, StefanThe purpose of this short note is to give a variation on the classical Donsker-Varadhan inequality, which bounds the first eigenvalue of a second-order elliptic operator on a bounded domain $\Omega$ by the largest mean first exit time of the associated drift-diffusion process via $$\lambda_1 \geq \frac{1}{\sup_{x \in \Omega} \mathbb{E}_x \tau_{\Omega^c}}.$$ Instead of looking at the mean of the first exist time, we study quantiles: let $d_{p, \partial \Omega}:\Omega \rightarrow \mathbb{R}_{\geq 0}$ be the smallest time $t$ such that the likelihood of exiting within that time is $p$, then $$\lambda_1 \geq \frac{\log{(1/p)}}{\sup_{x \in \Omega} d_{p,\partial \Omega}(x)}.$$ Moreover, as $p \rightarrow 0$, this lower bound converges to $\lambda_1$.Item Open Access An isoperimetric problem with Coulomb repulsion and attraction to a background nucleus(2017-04-23) Lu, Jianfeng; Otto, FelixWe study an isoperimetric problem the energy of which contains the perimeter of a set, Coulomb repulsion of the set with itself, and attraction of the set to a background nucleus as a point charge with charge $Z$. For the variational problem with constrained volume $V$, our main result is that the minimizer does not exist if $V - Z$ is larger than a constant multiple of $\max(Z^{2/3}, 1)$. The main technical ingredients of our proof are a uniform density lemma and electrostatic screening arguments.Item Open Access Bogoliubov corrections and trace norm convergence for the Hartree dynamicsMitrouskas, D; Petrat, S; Pickl, PWe consider the dynamics of a large number N of nonrelativistic bosons in the mean field limit for a class of interaction potentials that includes Coulomb interaction. In order to describe the fluctuations around the mean field Hartree state, we introduce an auxiliary Hamiltonian on the N-particle space that is very similar to the one obtained from Bogoliubov theory. We show convergence of the auxiliary time evolution to the fully interacting dynamics in the norm of the N-particle space. This result allows us to prove several other results: convergence of reduced density matrices in trace norm with optimal rate, convergence in energy trace norm, and convergence to a time evolution obtained from the Bogoliubov Hamiltonian on Fock space with expected optimal rate. We thus extend and quantify several previous results, e.g., by providing the physically important convergence rates, including time-dependent external fields and singular interactions, and allowing for general initial states, e.g., those that are expected to be ground states of interacting systems.Item Open Access Complex monopoles I: The Haydys monopole equationNagy, Ákos; Oliveira, GonçaloWe study complexified Bogomolny monopoles using the complex linear extension of the Hodge star operator, these monopoles can be interpreted as solutions to the Bogomolny equation with a complex gauge group. Alternatively, these equations can be obtained from dimensional reduction of the Haydys instanton equations to 3 dimensions, thus we call them Haydys monopoles. We find that (under mild hypotheses) the smooth locus of the moduli space of finite energy Haydys monopoles on $\mathbb{R}^3$ is a hyperk\"ahler manifold in 3-different ways, which contains the ordinary Bogomolny moduli space as a complex Lagrangian submanifold---an (ABA)-brane---with respect to any of these structures. Moreover, using a gluing construction we find an open neighborhood of the normal bundle of this submanifold which is modeled on a neighborhood of the tangent bundle to the Bogomolny moduli space. This is analogous to the case of Higgs bundles over a Riemann surface, where the (co)tangent bundle of holomorphic bundles canonically embeds into the Hitchin moduli space. These results contrast immensely with the case of finite energy Kapustin--Witten monopoles for which we show a vanishing theorem in the second paper of this series [11]. Both papers in this series are self contained and can be read independently.Item Open Access Defect resonances of truncated crystal structuresLu, Jianfeng; Marzuola, Jeremy L; Watson, Alexander BDefects in the atomic structure of crystalline materials may spawn electronic bound states, known as \emph{defect states}, which decay rapidly away from the defect. Simplified models of defect states typically assume the defect is surrounded on all sides by an infinite perfectly crystalline material. In reality the surrounding structure must be finite, and in certain contexts the structure can be small enough that edge effects are significant. In this work we investigate these edge effects and prove the following result. Suppose that a one-dimensional infinite crystalline material hosting a positive energy defect state is truncated a distance $M$ from the defect. Then, for sufficiently large $M$, there exists a resonance \emph{exponentially close} (in $M$) to the bound state eigenvalue. It follows that the truncated structure hosts a metastable state with an exponentially long lifetime. Our methods allow both the resonance frequency and associated resonant state to be computed to all orders in $e^{-M}$. We expect this result to be of particular interest in the context of photonic crystals, where defect states are used for wave-guiding and structures are relatively small. Finally, under a mild additional assumption we prove that if the defect state has negative energy then the truncated structure hosts a bound state with exponentially-close energy.Item Open Access Derivation of the Bogoliubov Time Evolution for Gases with Finite Speed of SoundPetrat, S; Pickl, P; Soffer, AThe derivation of mean-field limits for quantum systems at zero temperature has attracted many researchers in the last decades. Recent developments are the consideration of pair correlations in the effective description, which lead to a much more precise description of both the ground state properties and the dynamics of the Bose gas in the weak coupling limit. While mean-field results typically allow a convergence result for the reduced density matrix only, one gets norm convergence when considering the pair correlations proposed by Bogoliubov in his seminal 1947 paper. In the present paper we consider an interacting Bose gas in the ground state with slight perturbations. We consider the case where the volume of the gas - in units of the support of the excitation - and the density of the gas tend to infinity simultaneously. We assume that the coupling constant is such that the self-interaction of the fluctuations is of leading order, which leads to a finite (non-zero) speed of sound in the gas. We show that the difference between the N-body description and the Bogoliubov description is small in $L^2$ as the density of the gas tends to infinity. In this situation the ratio of the occupation number of the ground-state and the excitation forming the fluctuations will influence the leading order of the dynamics of the system. In this sense we show the validity of the Bogoliubov time evolution in a situation where the temperature has an effect on the dynamics of the system.Item Open Access Derivation of the Maxwell-Schrödinger Equations from the Pauli-Fierz HamiltonianLeopold, N; Pickl, PWe consider the spinless Pauli-Fierz Hamiltonian which describes a quantum system of non-relativistic identical particles coupled to the quantized electromagnetic field. We study the time evolution in a mean-field limit where the number $N$ of charged particles gets large while the coupling to the radiation field is rescaled by $1/\sqrt{N}$. At time zero we assume that almost all charged particles are in the same one-body state (a Bose-Einstein condensate) and we assume also the photons to be close to a coherent state. We show that at later times and in the limit $N \rightarrow \infty$ the charged particles as well as the photons exhibit condensation, with the time evolution approximately described by the Maxwell-Schr\"odinger system, which models the coupling of a non-relativistic particle to the classical electromagnetic field. Our result is obtained by an extension of the "method of counting", introduced by Pickl, to condensates of charged particles in interaction with their radiation field.Item Open Access Derivation of the time dependent Gross-Pitaevskii equation for a class of non purely positive potentialsJeblick, Maximilian; Pickl, PeterWe present a microscopic derivation of the time-dependent Gross-Pitaevskii equation starting from an interacting N-particle system of Bosons. We prove convergence of the reduced density matrix corresponding to the exact time evolution to the projector onto the solution of the respective Gross-Pitaevskii equation. Our work extends a previous result by one of us (P.P.[44]) to interaction potentials which need not to be nonnegative, but may have a sufficiently small negative part. One key estimate in our proof is an operator inequality which was first proven by Jun Yin, see [49].Item Open Access Derivation of the Time Dependent Gross-Pitaevskii Equation in Two DimensionsJeblick, Maximilian; Leopold, Nikolai; Pickl, PeterWe present a microscopic derivation of the defocusing two-dimensional cubic nonlinear Schr\"odinger equation as a mean field equation starting from an interacting $N$-particle system of Bosons. We consider the interaction potential to be given either by $W_\beta(x)=N^{-1+2 \beta}W(N^\beta x)$, for any $\beta>0$, or to be given by $V_N(x)=e^{2N} V(e^N x)$, for some spherical symmetric, positive and compactly supported $W,V \in L^\infty(\mathbb{R}^2,\mathbb{R})$. In both cases we prove the convergence of the reduced density matrix corresponding to the exact time evolution to the projector onto the solution of the corresponding nonlinear Schr\"odinger equation in trace norm. For the latter potential $V_N$ we show that it is crucial to take the microscopic structure of the condensate into account in order to obtain the correct dynamics.Item Open Access Derivation of the Time Dependent Two Dimensional Focusing NLS EquationJeblick, M; Pickl, PIn this paper, we present a microscopic derivation of the two-dimensional focusing cubic nonlinear Schr\"odinger equation starting from an interacting $N$-particle system of Bosons. The interaction potential we consider is given by $W_\beta(x)=N^{-1+2 \beta}W(N^\beta x)$ for some bounded and compactly supported $W$. We assume the $N$-particle Hamiltonian fulfills stability of second kind. The class of initial wave functions is chosen such that the variance in energy is small. We then prove the convergence of the reduced density matrix corresponding to the exact time evolution to the projector onto the solution of the corresponding nonlinear Schr\"odinger equation in either Sobolev trace norm, if the external potential is in some $L^p$ space, $p \in ]2, \infty]$, or in trace norm, for more general external potentials.Item Open Access Detecting localized eigenstates of linear operators(2017-11-30) Lu, J; Steinerberger, SWe describe a way of detecting the location of localized eigenvectors of a linear system $Ax = \lambda x$ for eigenvalues $\lambda$ with $|\lambda|$ comparatively large. We define the family of functions $f_{\alpha}: \left\{1.2. \dots, n\right\} \rightarrow \mathbb{R}_{}$ $$ f_{\alpha}(k) = \log \left( \| A^{\alpha} e_k \|_{\ell^2} \right),$$ where $\alpha \geq 0$ is a parameter and $e_k = (0,0,\dots, 0,1,0, \dots, 0)$ is the $k-$th standard basis vector. We prove that eigenvectors associated to eigenvalues with large absolute value localize around local maxima of $f_{\alpha}$: the metastable states in the power iteration method (slowing down its convergence) can be used to predict localization. We present a fast randomized algorithm and discuss different examples: a random band matrix, discretizations of the local operator $-\Delta + V$ and the nonlocal operator $(-\Delta)^{3/4} + V$.Item Open Access Effective Dynamics of a Tracer Particle Interacting with an Ideal Bose Gas(Communications in Mathematical Physics, 2014-06) Deckert, DA; Fröhlich, J; Pickl, P; Pizzo, AWe study a system consisting of a heavy quantum particle, called the tracer particle, coupled to an ideal gas of light Bose particles, the ratio of masses of the tracer particle and a gas particle being proportional to the gas density. All particles have non-relativistic kinematics. The tracer particle is driven by an external potential and couples to the gas particles through a pair potential. We compare the quantum dynamics of this system to an effective dynamics given by a Newtonian equation of motion for the tracer particle coupled to a classical wave equation for the Bose gas. We quantify the closeness of these two dynamics as the mean-field limit is approached (gas density → ∞). Our estimates allow us to interchange the thermodynamic with the mean-field limit. © 2014 Springer-Verlag Berlin Heidelberg.Item Open Access Ergodicity and Lyapunov functions for Langevin dynamics with singular potentials(2017-11-30) Herzog, DP; Mattingly, JCWe study Langevin dynamics of $N$ particles on $R^d$ interacting through a singular repulsive potential, e.g.~the well-known Lennard-Jones type, and show that the system converges to the unique invariant Gibbs measure exponentially fast in a weighted total variation distance. The proof of the main result relies on an explicit construction of a Lyapunov function. In contrast to previous results for such systems, our result implies geometric convergence to equilibrium starting from an essentially optimal family of initial distributions.Item Open Access Existence and computation of generalized Wannier functions for non-periodic systems in two dimensions and higherLu, Jianfeng; Stubbs, Kevin D; Watson, Alexander BExponentially-localized Wannier functions (ELWFs) are a basis of the Fermi projection of a material consisting of functions which decay exponentially fast away from their maxima. When the material is insulating and crystalline, conditions which guarantee existence of ELWFs in dimensions one, two, and three are well-known, and methods for constructing the ELWFs numerically are well-developed. We consider the case where the material is insulating but not necessarily crystalline, where much less is known. In one spatial dimension, Kivelson and Nenciu-Nenciu have proved ELWFs can be constructed as the eigenfunctions of a self-adjoint operator acting on the Fermi projection. In this work, we identify an assumption under which we can generalize the Kivelson-Nenciu-Nenciu result to two dimensions and higher. Under this assumption, we prove that ELWFs can be constructed as the eigenfunctions of a sequence of self-adjoint operators acting on the Fermi projection. We conjecture that the assumption we make is equivalent to vanishing of topological obstructions to the existence of ELWFs in the special case where the material is crystalline. We numerically verify that our construction yields ELWFs in various cases where our assumption holds and provide numerical evidence for our conjecture.Item Open Access Existence of Spontaneous Pair CreationPickl, PeterA prove of the existence of spontaneous pair creation as an external field problem in second quantized Dirac theory. PHD ThesisItem Metadata only Fractional stochastic differential equations satisfying fluctuation-dissipation theorem(2017-04-23) Li, L; Liu, J-G; Lu, JianfengWe consider in this work stochastic differential equation (SDE) model for particles in contact with a heat bath when the memory effects are non-negligible. As a result of the fluctuation-dissipation theorem, the differential equations driven by fractional Brownian noise to model memory effects should be paired with Caputo derivatives and based on this we consider fractional stochastic differential equations (FSDEs), which should be understood in an integral form. We establish the existence of strong solutions for such equations. In the linear forcing regime, we compute the solutions explicitly and analyze the asymptotic behavior, through which we verify that satisfying fluctuation-dissipation indeed leads to the correct physical behavior. We further discuss possible extensions to nonlinear forcing regime, while leave the rigorous analysis for future works.Item Open Access Free Time Evolution of a Tracer Particle Coupled to a Fermi Gas in the High-Density Limit(Communications in Mathematical Physics, 2017-11) Jeblick, M; Mitrouskas, D; Petrat, S; Pickl, P© 2017, Springer-Verlag GmbH Germany. The dynamics of a particle coupled to a dense and homogeneous ideal Fermi gas in two spatial dimensions is studied. We analyze the model for coupling parameter g = 1 (i.e., not in the weak coupling regime), and prove closeness of the time evolution to an effective dynamics for large densities of the gas and for long time scales of the order of some power of the density. The effective dynamics is generated by the free Hamiltonian with a large but constant energy shift which is given at leading order by the spatially homogeneous mean field potential of the gas particles. Here, the mean field approximation turns out to be accurate although the fluctuations of the potential around its mean value can be arbitrarily large. Our result is in contrast to a dense bosonic gas in which the free motion of a tracer particle would be disturbed already on a very short time scale. The proof is based on the use of strong phase cancellations in the deviations of the microscopic dynamics from the mean field time evolution.