# Detecting localized eigenstates of linear operators

## Date

2017-11-30

## Authors

## Journal Title

## Journal ISSN

## Volume Title

## Repository Usage Stats

views

downloads

## Abstract

We describe a way of detecting the location of localized eigenvectors of a linear system $Ax = \lambda x$ for eigenvalues $\lambda$ with $|\lambda|$ comparatively large. We define the family of functions $f_{\alpha}: \left{1.2. \dots, n\right} \rightarrow \mathbb{R}*{}$ $$ f*{\alpha}(k) = \log \left( | A^{\alpha} e_k |*{\ell^2} \right),$$ where $\alpha \geq 0$ is a parameter and $e_k = (0,0,\dots, 0,1,0, \dots, 0)$ is the $k-$th standard basis vector. We prove that eigenvectors associated to eigenvalues with large absolute value localize around local maxima of $f*{\alpha}$: the metastable states in the power iteration method (slowing down its convergence) can be used to predict localization. We present a fast randomized algorithm and discuss different examples: a random band matrix, discretizations of the local operator $-\Delta + V$ and the nonlocal operator $(-\Delta)^{3/4} + V$.

## Type

## Department

## Description

## Provenance

## Citation

## Permalink

## Collections

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.