Skip to main content
Duke University Libraries
DukeSpace Scholarship by Duke Authors
  • Login
  • Ask
  • Menu
  • Login
  • Ask a Librarian
  • Search & Find
  • Using the Library
  • Research Support
  • Course Support
  • Libraries
  • About
View Item 
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
  •   DukeSpace
  • Duke Scholarly Works
  • Scholarly Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dose coefficients for organ dosimetry in tomosynthesis imaging of adults and pediatrics across diverse protocols.

Thumbnail
View / Download
2.7 Mb
Date
2022-06-11
Authors
Sharma, Shobhit
Kapadia, Anuj
Ria, Francesco
Segars, W Paul
Samei, Ehsan
Repository Usage Stats
10
views
9
downloads
Abstract
<h4>Purpose</h4>The gold-standard method for estimation of patient-specific organ doses in digital tomosynthesis (DT) requires protocol-specific Monte Carlo (MC) simulations of radiation transport in anatomically accurate computational phantoms. Although accurate, MC simulations are computationally expensive, leading to a turnaround time in the order of core hours for simulating a single exam. This limits their clinical utility. The purpose of this study is to overcome this limitation by utilizing patient- and protocol-specific MC simulations to develop a comprehensive database of air-kerma-normalized organ dose coefficients for a virtual population of adult and pediatric patient models over an expanded set of exam protocols in DT for retrospective and prospective estimation of radiation dose in clinical tomosynthesis.<h4>Materials and methods</h4>A clinically representative virtual population of 14 patient models was used, with pediatric models (M and F) at ages 1, 5, 10, and 15 and adult patient models (M and F) with BMIs at 10th , 50th , and 90th percentiles of the US population. A GPU-based MC simulation framework was used to simulate organ doses in the patient models, incorporating the scanner-specific configuration of a clinical DT system (VolumeRad, GE Healthcare, Waukesha, WI) and an expanded set of exam protocols including 21 distinct acquisition techniques for imaging a variety of anatomical regions (head and neck, thorax, spine, abdomen, and knee). Organ dose coefficients (hn ) were estimated by normalizing organ dose estimates to air kerma at 70 cm (X70cm ) from the source in the scout view. The corresponding coefficients for projection radiography were approximated using organ doses estimated for the scout view. The organ dose coefficients were further used to compute air-kerma-normalized patient-specific effective dose coefficients (Kn ) for all combinations of patients and protocols, and a comparative analysis examining the variation of radiation burden across sex, age, and exam protocols in DT, and with projection radiography was performed.<h4>Results</h4>The database of organ dose coefficients (hn ) containing 294 distinct combinations of patients and exam protocols was developed and made publicly available. The values of Kn were observed to produce estimates of effective dose in agreement with prior studies and consistent with magnitudes expected for pediatric and adult patients across the different exam protocols, with head and neck regions exhibiting relatively lower and thorax and C-spine (apsc, apcs) regions relatively higher magnitudes. The ratios (r = Kn /Kn,rad ) quantifying the differences air-kerma-normalized patient-specific effective doses between DT and projection radiography were centered around 1.0 for all exam protocols, with the exception of protocols covering the knee region (pawk, patk).<h4>Conclusions</h4>This study developed a database of organ dose coefficients for a virtual population of 14 adult and pediatric XCAT patient models over a set of 21 exam protocols in DT. Using empirical measurements of air kerma in the clinic, these organ dose coefficients enable practical retrospective and prospective patient-specific radiation dosimetry. The computation of air-kerma-normalized patient-specific effective doses further enable the comparison of radiation burden to the patient populations between protocols and between imaging modalities (e.g., DT and projection radiography), as presented in this study. This article is protected by copyright. All rights reserved.
Type
Journal article
Subject
Task Group 321
XCAT
monte carlo
patient specific
radiation dosimetry & risk
tomosynthesis
Permalink
https://hdl.handle.net/10161/25118
Published Version (Please cite this version)
10.1002/mp.15798
Publication Info
Sharma, Shobhit; Kapadia, Anuj; Ria, Francesco; Segars, W Paul; & Samei, Ehsan (2022). Dose coefficients for organ dosimetry in tomosynthesis imaging of adults and pediatrics across diverse protocols. Medical physics. 10.1002/mp.15798. Retrieved from https://hdl.handle.net/10161/25118.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
  • Scholarly Articles
More Info
Show full item record

Scholars@Duke

Kapadia

Anuj J Kapadia

Adjunct Associate Professor in the Department of Radiology
My research focuses on developing an innovative imaging modality - Neutron Stimulated Emission Computed Tomography (NSECT), that uses inelastic scattering through fast neutrons to generate tomographic images of the body's element composition. Such information is vital in diagnosing a variety of disorders ranging from iron and copper overload in the liver to several cancers. Specifically, there are two ongoing projects: 1) Experimental Implementation of NSECT Neutron sp
Ria

Francesco Ria

Research Associate, Senior
Segars

William Paul Segars

Associate Professor in Radiology
Our current research involves the use of computer-generated phantoms and simulation techniques to investigate and optimize medical imaging systems and methods. Medical imaging simulation involves virtual experiments carried out entirely on the computer using computational models for the patients as well as the imaging devices. Simulation is a powerful tool for characterizing, evaluating, and optimizing medical imaging systems. A vital aspect of simulation is to have realistic models of the
Alphabetical list of authors with Scholars@Duke profiles.
Open Access

Articles written by Duke faculty are made available through the campus open access policy. For more information see: Duke Open Access Policy

Rights for Collection: Scholarly Articles


Works are deposited here by their authors, and represent their research and opinions, not that of Duke University. Some materials and descriptions may include offensive content. More info

Make Your Work Available Here

How to Deposit

Browse

All of DukeSpaceCommunities & CollectionsAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit DateThis CollectionAuthorsTitlesTypesBy Issue DateDepartmentsAffiliations of Duke Author(s)SubjectsBy Submit Date

My Account

LoginRegister

Statistics

View Usage Statistics
Duke University Libraries

Contact Us

411 Chapel Drive
Durham, NC 27708
(919) 660-5870
Perkins Library Service Desk

Digital Repositories at Duke

  • Report a problem with the repositories
  • About digital repositories at Duke
  • Accessibility Policy
  • Deaccession and DMCA Takedown Policy

TwitterFacebookYouTubeFlickrInstagramBlogs

Sign Up for Our Newsletter
  • Re-use & Attribution / Privacy
  • Harmful Language Statement
  • Support the Libraries
Duke University