Temporal resolution of single photon responses in primate rod photoreceptors and limits imposed by cellular noise.

Thumbnail Image



Journal Title

Journal ISSN

Volume Title

Repository Usage Stats


Citation Stats


Sensory receptor noise corrupts sensory signals, contributing to imperfect perception and dictating central processing strategies. For example, noise in rod phototransduction limits our ability to detect light and minimizing the impact of this noise requires precisely tuned nonlinear processing by the retina. But detection sensitivity is only one aspect of night vision: prompt and accurate behavior also requires that rods reliably encode the timing of photon arrivals. We show here that the temporal resolution of responses of primate rods is much finer than the duration of the light response and identify the key limiting sources of transduction noise. We also find that the thermal activation rate of rhodopsin is lower than previous estimates, implying that other noise sources are more important than previously appreciated. A model of rod single-photon responses reveals that the limiting noise relevant for behavior depends critically on how rod signals are pooled by downstream neurons.





Published Version (Please cite this version)


Publication Info

Field, Greg D, Valerie Uzzell, EJ Chichilnisky and Fred Rieke (2018). Temporal resolution of single photon responses in primate rod photoreceptors and limits imposed by cellular noise. Journal of neurophysiology. 10.1152/jn.00683.2018 Retrieved from https://hdl.handle.net/10161/17856.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Greg D. Field

Adjunct Associate Professor of Neurobiology

My laboratory studies how the retina processes visual scenes and transmits this information to the brain.  We use multi-electrode arrays to record the activity of hundreds of retina neurons simultaneously in conjunction with transgenic mouse lines and chemogenetics to manipulate neural circuit function. We are interested in three major areas. First, we work to understand how neurons in the retina are functionally connected. Second we are studying how light-adaptation and circadian rhythms alter visual processing in the retina. Finally, we are working to understand the mechanisms of retinal degenerative conditions and we are investigating potential treatments in animal models.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.