Generalized Linear Binning to Compare Hyperpolarized 129Xe Ventilation Maps Derived from 3D Radial Gas Exchange Versus Dedicated Multislice Gradient Echo MRI.
Date
2019-11-27
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
RATIONALE:Hyperpolarized 129Xe ventilation MRI is typically acquired using multislice fast gradient recalled echo (GRE), but interleaved 3D radial 129Xe gas transfer MRI now provides dissolved-phase and ventilation images from a single breath. To investigate whether these ventilation images provide equivalent quantitative metrics, we introduce generalized linear binning analysis. METHODS:This study included 36 patients who had undergone both multislice GRE ventilation and 3D radial gas exchange imaging. Images were then quantified by linear binning to classify voxels into one of four clusters: ventilation defect percentage (VDP), Low-, Medium- or High-ventilation percentage (LVP, MVP, HVP). For 3D radial images, linear binning thresholds were generalized using a Box-Cox rescaled reference histogram. We compared the cluster populations from the two ventilation acquisitions both numerically and spatially. RESULTS:Interacquisition Bland-Altman limits of agreement for the clusters between 3D radial vs GRE were (-7% to 5%) for VDP, (-10% to 14%) for LVP, and (-8% to 8%) for HVP. While binning maps were qualitatively similar between acquisitions, their spatial overlap was modest for VDP (Dice = 0.5 ± 0.2), and relatively poor for LVP (0.3 ± 0.1) and HVP (0.2 ± 0.1). CONCLUSION:Both acquisitions yield reasonably concordant VDP and qualitatively similar maps. However, poor regional agreement (Dice) suggests that the two acquisitions cannot yet be used interchangeably. However, further improvements in 3D radial resolution and reconciliation of bias field correction may well obviate the need for a dedicated ventilation scan in many cases.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
He, Mu, Ziyi Wang, Leith Rankine, Sheng Luo, John Nouls, Rohan Virgincar, Joseph Mammarappallil, Bastiaan Driehuys, et al. (2019). Generalized Linear Binning to Compare Hyperpolarized 129Xe Ventilation Maps Derived from 3D Radial Gas Exchange Versus Dedicated Multislice Gradient Echo MRI. Academic radiology. 10.1016/j.acra.2019.10.016 Retrieved from https://hdl.handle.net/10161/19675.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Sheng Luo
Joseph George Mammarappallil
Bastiaan Driehuys
Our research focuses on magnetic resonance imaging (MRI) research with hyperpolarized 129Xe gas. We are at at the forefront of developing this novel technology for imaging the lungs of patients with pulmonary disease. We currently have multiple, ongoing NIH and industry-sponsored studies invovling this technique. Hyperpolarization is a laser-based process that enhances the MRI signal of xenon gas by a factor of 100,000 to allow for high-resolution, non-invasive MRI of pulmonary function. In addition to our research program, this technology was recently FDA approved and efforts are underway to implement it clinically.
Current studies are applying 129Xe MRI for early diagnosis and monitoring of interstitial and pulmonary vascular diseases. Our group, which is comprised of MRI scientists and radiologists, works closely with colleagues in pulmonary medicine. Our laboratory provides research opportunities to Ph.D., Masters, and medical students as well as select undergraduate students.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.