Examining the Role of Lateral Parietal Cortex in Emotional Distancing Using TMS.


We recently proposed a neurocognitive model of distancing-an emotion regulation tactic-with a focus on the lateral parietal cortex. Although this brain area has been implicated in both cognitive control and self-projection processes during distancing, fMRI work suggests that these processes may be dissociable here. This preregistered (NCT03698591) study tested the contribution of left temporoparietal junction (TPJ) to distancing using repetitive transcranial magnetic stimulation. We hypothesized that inhibiting left TPJ would decrease the efficiency of distancing but not distraction, another regulation tactic with similar cognitive control requirements, thus implicating this region in the self-projection processes unique to distancing. Active and sham continuous theta burst stimulation (cTBS) were applied to 30 healthy adults in a single-session crossover design. Tactic efficiency was measured using online reports of valence and effort. The stimulation target was established from the group TPJ fMRI activation peak in an independent sample using the same distancing task, and anatomical MRI scans were used for individual targeting. Analyses employed both repeated-measures ANOVA and analytic procedures tailored to crossover designs. Irrespective of cTBS, distancing led to greater decreases in negative valence over time relative to distraction, and distancing effort decreased over time while distraction effort remained stable. Exploratory analyses also revealed that active cTBS made distancing more effortful, but not distraction. Thus, left TPJ seems to support self-projection processes in distancing, and these processes may be facilitated by repeated use. These findings help to clarify the role of lateral parietal cortex in distancing and inform applications of distancing and distraction.





Published Version (Please cite this version)


Publication Info

Powers, John P, Simon W Davis, Andrada D Neacsiu, Lysianne Beynel, Lawrence G Appelbaum and Kevin S LaBar (2020). Examining the Role of Lateral Parietal Cortex in Emotional Distancing Using TMS. Cognitive, affective & behavioral neuroscience, 20(5). pp. 1090–1102. 10.3758/s13415-020-00821-5 Retrieved from https://hdl.handle.net/10161/21631.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.



Simon Wilton Davis

Associate Professor in Neurology

My research centers around the use of structural and functional imaging measures to study the shifts in network architecture in the aging brain. I am specifically interested in changes in how changes in structural and functional connectivity associated with aging impact the semantic retrieval of word or fact knowledge. Currently this involves asking why older adults have particular difficulty in certain kinds of semantic retrieval, despite the fact that vocabularies and knowledge stores typically improve with age.

A second line of research involves asking questions about how this semantic system is organized in young adults, understanding which helps form a basis for asking questions about older adults. To what degree are these semantic retrieval processes lateralized? What cognitive factors affect this laterality? How are brain structures like the corpus callosum involved in mediating distributed activation patterns associated with semantic retrieval? 


Andrada Delia Neacsiu

Associate Professor in Psychiatry and Behavioral Sciences

I am a clinical psychologist with a primary interest in outpatient interventions for difficulties managing emotional experiences that interfere with well-being. As a clinician, I specialize in Dialectical Behavior Therapy (DBT) and Cognitive Behavioral Therapy (CBT) for adults who report a variety of mental health problems, including personality, mood, anxiety, eating, trauma, stress-related, adjustment, and impulse control disorders. My approach to psychotherapy includes working collaboratively with my patients to identify their unique life and therapy goals and implementing evidence-based interventions to achieve the identified goals. As an educator, I train clinicians nationally and teach graduate students, psychology and psychiatry residents in in how to effectively apply CBT and DBT in their clinical work. As a researcher, I focus on psychotherapy optimization and neuroscience-informed treatment development for emotion dysregulation. My research keeps me up to date with the latest evidence-based approaches to use in my clinical work, and my work with patients strongly influences the research that I do.  Outside of work, I enjoy traveling, gourmet food, nature adventures, and time with friends with family.


Kevin S. LaBar

Professor of Psychology and Neuroscience

My research focuses on understanding how emotional events modulate cognitive processes in the human brain. We aim to identify brain regions that encode the emotional properties of sensory stimuli, and to show how these regions interact with neural systems supporting social cognition, executive control, and learning and memory. To achieve this goal, we use a variety of cognitive neuroscience techniques in human subject populations. These include psychophysiological monitoring, functional magnetic resonance imaging (fMRI), machine learning,  and behavioral studies in healthy adults as well as psychiatric patients. This integrative approach capitalizes on recent advances in the field and may lead to new insights into cognitive-emotional interactions in the brain.

Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.