A new SOD mimic, Mn(III) ortho N-butoxyethylpyridylporphyrin, combines superb potency and lipophilicity with low toxicity.

Abstract

The Mn porphyrins of k(cat)(O(2)(.-)) as high as that of a superoxide dismutase enzyme and of optimized lipophilicity have already been synthesized. Their exceptional in vivo potency is at least in part due to their ability to mimic the site and location of mitochondrial superoxide dismutase, MnSOD. MnTnHex-2-PyP(5+) is the most studied among lipophilic Mn porphyrins. It is of remarkable efficacy in animal models of oxidative stress injuries and particularly in central nervous system diseases. However, when used at high single and multiple doses it becomes toxic. The toxicity of MnTnHex-2-PyP(5+) has been in part attributed to its micellar properties, i.e., the presence of polar cationic nitrogens and hydrophobic alkyl chains. The replacement of a CH(2) group by an oxygen atom in each of the four alkyl chains was meant to disrupt the porphyrin micellar character. When such modification occurs at the end of long alkyl chains, the oxygens become heavily solvated, which leads to a significant drop in the lipophilicity of porphyrin. However, when the oxygen atoms are buried deeper within the long heptyl chains, their excessive solvation is precluded and the lipophilicity preserved. The presence of oxygens and the high lipophilicity bestow the exceptional chemical and physical properties to Mn(III) meso-tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin, MnTnBuOE-2-PyP(5+). The high SOD-like activity is preserved and even enhanced: log k(cat)(O(2)(.-))=7.83 vs 7.48 and 7.65 for MnTnHex-2-PyP(5+) and MnTnHep-2-PyP(5+), respectively. MnTnBuOE-2-PyP(5+) was tested in an O(2)(.-) -specific in vivo assay, aerobic growth of SOD-deficient yeast, Saccharomyces cerevisiae, where it was fully protective in the range of 5-30 μM. MnTnHep-2-PyP(5+) was already toxic at 5 μM, and MnTnHex-2-PyP(5+) became toxic at 30 μM. In a mouse toxicity study, MnTnBuOE-2-PyP(5+) was several-fold less toxic than either MnTnHex-2-PyP(5+) or MnTnHep-2-PyP(5+).

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1016/j.freeradbiomed.2012.02.006

Publication Info

Rajic, Zrinka, Artak Tovmasyan, Ivan Spasojevic, Huaxin Sheng, Miaomiao Lu, Alice M Li, Edith B Gralla, David S Warner, et al. (2012). A new SOD mimic, Mn(III) ortho N-butoxyethylpyridylporphyrin, combines superb potency and lipophilicity with low toxicity. Free radical biology & medicine, 52(9). pp. 1828–1834. 10.1016/j.freeradbiomed.2012.02.006 Retrieved from https://hdl.handle.net/10161/23287.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.

Scholars@Duke

Spasojevic

Ivan Spasojevic

Associate Professor in Medicine
Sheng

Huaxin Sheng

Associate Professor in Anesthesiology

We have successfully developed various rodent models of brain and spinal cord injuries in our lab, such as focal cerebral ischemia, global cerebral ischemia, head trauma, subarachnoid hemorrhage, intracerebral hemorrhage, spinal cord ischemia and compression injury. We also established cardiac arrest and hemorrhagic shock models for studying multiple organ dysfunction.  Our current studies focus on two projects. One is to examine the efficacy of catalytic antioxidant in treating cerebral ischemia and the other is to examine the efficacy of post-conditioning on outcome of subarachnoid hemorrhage induced cognitive dysfunction.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.