Learning a hybrid architecture for sequence regression and annotation

Loading...
Thumbnail Image

Date

2016-01-01

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

175
views
122
downloads

Abstract

© Copyright 2016, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.When learning a hidden Markov model (HMM), sequential observations can often be complemented by real-valued summary response variables generated from the path of hidden states. Such settings arise in numerous domains, including many applications in biology, like motif discovery and genome annotation. In this paper, we present a flexible framework for jointly modeling both latent sequence features and the functional mapping that relates the summary response variables to the hidden state sequence. The algorithm is compatible with a rich set of mapping functions. Results show that the availability of additional continuous response variables can simultaneously improve the annotation of the sequential observations and yield good prediction performance in both synthetic data and real-world datasets.

Department

Description

Provenance

Subjects

Citation

Scholars@Duke

Henao

Ricardo Henao

Associate Professor of Biostatistics & Bioinformatics
Hartemink

Alexander J. Hartemink

Professor of Computer Science

Computational biology, machine learning, Bayesian statistics, transcriptional regulation, genomics and epigenomics, graphical models, Bayesian networks, hidden Markov models, systems biology, computational neurobiology, classification, feature selection


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.