The Effect of Anaemia on Intra-operative Neuromonitoring Following Correction of Large Scoliosis Curves: Two Case Reports.
Date
2024-04
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
The correction of anemia is important in reversing significant intraoperative bilateral motor-evoked potential (MEP) loss following rod placement for correction of large scoliosis curves. This article presents a retrospective review of intraoperative neuromonitoring (IONM) data, anesthesia records, and medical charts of two patients with significant bilateral MEP changes associated with posterior spinal surgery for deformity correction. A 70 kg 12-year-old and a 44 kg 16-year-old female with main thoracic curves underwent a posterior scoliosis correction with multilevel posterior column osteotomies. Following rod insertion, significant reduction in the bilateral lower extremity MEP occurred in both cases despite mean arterial pressure exceeding 70 mmHg, which was presumed to be due to the scale of the correction attempted in the setting of haemorrhage which rendered the patient acutely anaemic, thus compromising cord vasculature and oxygen delivery. The rods were removed and packed red blood cell transfusions were administered in response to acute anaemia as a result of haemorrhage in both cases. Neither was noted to be anaemic preoperatively. Once the MEP signals improved, the rods were reinserted and correction was attempted, limited by neuromonitoring signals and resistance of the bony anchors to pullout. At closure, the MEPs were near baseline in the first case and >50% of baseline in the second. There were no changes in the somatosensory evoked potential signals in either case. Post-operative neurological function was normal in both patients. Correcting the circulating haemoglobin concentration through blood product resuscitation allowed for safe correction of spinal deformity in two cases with significant bilateral MEP loss following the initial placement of rods.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Rocos, Brett, Ian H Wong, Thorsten Jentzsch, Samuel Strantzas and Stephen J Lewis (2024). The Effect of Anaemia on Intra-operative Neuromonitoring Following Correction of Large Scoliosis Curves: Two Case Reports. Cureus, 16(4). p. e59353. 10.7759/cureus.59353 Retrieved from https://hdl.handle.net/10161/31147.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke

Brett Rocos
I joined the team at Duke University Health from London, UK, where I was a Consultant Adult and Paediatric Spine Surgeon at Barts Health NHS Trust and Honorary Consultant Senior Lecturer at Queen Mary University of London. I completed my surgical training in in the South West of the UK and at the University of Toronto, and am fellowship trained in adult spine surgery, paediatric spine surgery, orthopaedic trauma surgery, research and healthcare management.
I am driven to support patients at every stage of their care, from clinic assessment, through surgery to discharge. Making sure that every person, adult, child, family or friend understands what’s wrong, helping them to choose the right treatment for them, and what the recovery will be like is an important priority.
My research activity focusses on finding effective new treatments for spinal disorders and bringing them to patients. Focusing on spinal deformity, I have led investigations in the UK, Canada and the USA, and I sit on the Global AO Knowledge Forum for Deformity and the Research Grants Committee at the Scoliosis Research Society. I have lectured in North America and Europe about the treatment of spine disorders for the Scoliosis Research Society, Global Spine Congress, AO Spine and Eurospine, and I have worked hard to produce research that improves the care for spine patients wherever they live. Lastly, I review for several orthopaedic journals and I am Deputy Editor of the Bone and Joint 360, a leading publication with a global readership.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.