The MISDEF2 algorithm: an updated algorithm for patient selection in minimally invasive deformity surgery.
Date
2019-10-25
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
OBJECTIVE:Minimally invasive surgery (MIS) can be used as an alternative or adjunct to traditional open techniques for the treatment of patients with adult spinal deformity. Recent advances in MIS techniques, including advanced anterior approaches, have increased the range of candidates for MIS deformity surgery. The minimally invasive spinal deformity surgery (MISDEF2) algorithm was created to provide an updated framework for decision-making when considering MIS techniques in correction of adult spinal deformity. METHODS:A modified algorithm was developed that incorporates a patient's preoperative radiographic parameters and leads to one of 4 general plans ranging from basic to advanced MIS techniques to open deformity surgery with osteotomies. The authors surveyed 14 fellowship-trained spine surgeons experienced with spinal deformity surgery to validate the algorithm using a set of 24 cases to establish interobserver reliability. They then re-surveyed the same surgeons 2 months later with the same cases presented in a different sequence to establish intraobserver reliability. Responses were collected and analyzed. Correlation values were determined using SPSS software. RESULTS:Over a 3-month period, 14 fellowship-trained deformity surgeons completed the surveys. Responses for MISDEF2 algorithm case review demonstrated an interobserver kappa of 0.85 for the first round of surveys and an interobserver kappa of 0.82 for the second round of surveys, consistent with substantial agreement. In at least 7 cases, there was perfect agreement between the reviewing surgeons. The mean intraobserver kappa for the 2 surveys was 0.8. CONCLUSIONS:The MISDEF2 algorithm was found to have substantial inter- and intraobserver agreement. The MISDEF2 algorithm incorporates recent advances in MIS surgery. The use of the MISDEF2 algorithm provides reliable guidance for surgeons who are considering either an MIS or an open approach for the treatment of patients with adult spinal deformity.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Mummaneni, Praveen V, Paul Park, Christopher I Shaffrey, Michael Y Wang, Juan S Uribe, Richard G Fessler, Dean Chou, Adam S Kanter, et al. (2019). The MISDEF2 algorithm: an updated algorithm for patient selection in minimally invasive deformity surgery. Journal of neurosurgery. Spine. pp. 1–8. 10.3171/2019.7.spine181104 Retrieved from https://hdl.handle.net/10161/19581.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Christopher Ignatius Shaffrey
I have more than 25 years of experience treating patients of all ages with spinal disorders. I have had an interest in the management of spinal disorders since starting my medical education. I performed residencies in both orthopaedic surgery and neurosurgery to gain a comprehensive understanding of the entire range of spinal disorders. My goal has been to find innovative ways to manage the range of spinal conditions, straightforward to complex. I have a focus on managing patients with complex spinal disorders. My patient evaluation and management philosophy is to provide engaged, compassionate care that focuses on providing the simplest and least aggressive treatment option for a particular condition. In many cases, non-operative treatment options exist to improve a patient’s symptoms. I have been actively engaged in clinical research to find the best ways to manage spinal disorders in order to achieve better results with fewer complications.
Khoi Duc Than
I chose to pursue neurosurgery as a career because of my fascination with the human nervous system. In medical school, I developed a keen interest in the diseases that afflict the brain and spine and gravitated towards the only field where I could help treat these diseases with my own hands. I focus on disorders of the spine where my first goal is to help patients avoid surgery if at all possible. If surgery is needed, I treat patients using the most advanced minimally invasive techniques available in order to minimize pain, blood loss, and hospital stay, while maximizing recovery, neurologic function, and quality of life. In my free time, I enjoy spending time with my family and friends. I am an avid sports fan and love to eat. I try to stay physically fit by going to the gym and playing ice hockey.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.