Negative-stain electron microscopy of inside-out FtsZ rings reconstituted on artificial membrane tubules show ribbons of protofilaments.
Date
2012-07
Journal Title
Journal ISSN
Volume Title
Repository Usage Stats
views
downloads
Citation Stats
Abstract
FtsZ, the primary cytoskeletal element of the Z ring, which constricts to divide bacteria, assembles into short, one-stranded filaments in vitro. These must be further assembled to make the Z ring in bacteria. Conventional electron microscopy (EM) has failed to image the Z ring or resolve its substructure. Here we describe a procedure that enabled us to image reconstructed, inside-out FtsZ rings by negative-stain EM, revealing the arrangement of filaments. We took advantage of a unique lipid that spontaneously forms 500 nm diameter tubules in solution. We optimized conditions for Z-ring assembly with fluorescence light microscopy and then prepared specimens for negative-stain EM. Reconstituted FtsZ rings, encircling the tubules, were clearly resolved. The rings appeared as ribbons of filaments packed side by side with virtually no space between neighboring filaments. The rings were separated by variable expanses of empty tubule as seen by light microscopy or EM. The width varied considerably from one ring to another, but each ring maintained a constant width around its circumference. The inside-out FtsZ rings moved back and forth along the tubules and exchanged subunits with solution, similarly to Z rings reconstituted outside or inside tubular liposomes. FtsZ from Escherichia coli and Mycobacterium tuberculosis assembled rings of similar structure, suggesting a universal structure across bacterial species. Previous models for the Z ring in bacteria have favored a structure of widely scattered filaments that are not in contact. The ribbon structure that we discovered here for reconstituted inside-out FtsZ rings provides what to our knowledge is new evidence that the Z ring in bacteria may involve lateral association of protofilaments.
Type
Department
Description
Provenance
Citation
Permalink
Published Version (Please cite this version)
Publication Info
Milam, Sara L, Masaki Osawa and Harold P Erickson (2012). Negative-stain electron microscopy of inside-out FtsZ rings reconstituted on artificial membrane tubules show ribbons of protofilaments. Biophysical journal, 103(1). 10.1016/j.bpj.2012.05.035 Retrieved from https://hdl.handle.net/10161/16457.
This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.
Collections
Scholars@Duke
Harold Paul Erickson
Recent research has been on cytoskeleton (eukaryotes and bacteria); a skirmish to debunk the irisin story; a reinterpretation of proposed multivalent binders of the coronavirus spike protein. I have also published an ebook on "Principles of Protein-Protein Association" suitable for a course module or individual learning.
Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.