Molecular endpoints of Ca2+/calmodulin- and voltage-dependent inactivation of Ca(v)1.3 channels.

Loading...
Thumbnail Image

Date

2010-03

Authors

Tadross, Michael R
Ben Johny, Manu
Yue, David T

Journal Title

Journal ISSN

Volume Title

Repository Usage Stats

113
views
96
downloads

Citation Stats

Abstract

Ca(2+)/calmodulin- and voltage-dependent inactivation (CDI and VDI) comprise vital prototypes of Ca(2+) channel modulation, rich with biological consequences. Although the events initiating CDI and VDI are known, their downstream mechanisms have eluded consensus. Competing proposals include hinged-lid occlusion of channels, selectivity filter collapse, and allosteric inhibition of the activation gate. Here, novel theory predicts that perturbations of channel activation should alter inactivation in distinctive ways, depending on which hypothesis holds true. Thus, we systematically mutate the activation gate, formed by all S6 segments within Ca(V)1.3. These channels feature robust baseline CDI, and the resulting mutant library exhibits significant diversity of activation, CDI, and VDI. For CDI, a clear and previously unreported pattern emerges: activation-enhancing mutations proportionately weaken inactivation. This outcome substantiates an allosteric CDI mechanism. For VDI, the data implicate a "hinged lid-shield" mechanism, similar to a hinged-lid process, with a previously unrecognized feature. Namely, we detect a "shield" in Ca(V)1.3 channels that is specialized to repel lid closure. These findings reveal long-sought downstream mechanisms of inactivation and may furnish a framework for the understanding of Ca(2+) channelopathies involving S6 mutations.

Department

Description

Provenance

Citation

Published Version (Please cite this version)

10.1085/jgp.200910308

Publication Info

Tadross, Michael R, Manu Ben Johny and David T Yue (2010). Molecular endpoints of Ca2+/calmodulin- and voltage-dependent inactivation of Ca(v)1.3 channels. J Gen Physiol, 135(3). pp. 197–215. 10.1085/jgp.200910308 Retrieved from https://hdl.handle.net/10161/15561.

This is constructed from limited available data and may be imprecise. To cite this article, please review & use the official citation provided by the journal.


Unless otherwise indicated, scholarly articles published by Duke faculty members are made available here with a CC-BY-NC (Creative Commons Attribution Non-Commercial) license, as enabled by the Duke Open Access Policy. If you wish to use the materials in ways not already permitted under CC-BY-NC, please consult the copyright owner. Other materials are made available here through the author’s grant of a non-exclusive license to make their work openly accessible.